A5_soln

# A5_soln - Math 235 Assignment 5 Solutions 1. Use the...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 235 Assignment 5 Solutions 1. Use the Gram-Schmidt procedure to produce an orthonormal basis from the given basis. a) { (1 , 1 , , 1) , (0 ,- 1 , 1 , 1) , (3 , , 1 , 1) } Solution: Denote the given basis by ~ z 1 = (1 , 1 , , 1), ~ z 2 = (0 ,- 1 , 1 , 1), ~ z 3 = (3 , , 1 , 1). Let ~w 1 = ~ z 1 . Then, we get ~w 2 = perp ~w 1 ( ~ z 2 ) = ~ z 2- proj ~w 1 ( ~ z 2 ) = ~ z 2- ~ z 2 ~w 1 k ~w 1 k 2 ~w 1 = (0 ,- 1 , 1 , 1)- 1 3 ( (0 ,- 1 , 1 , 1) (1 , 1 , , 1) ) (1 , 1 , , 1) = (0 ,- 1 , 1 , 1)- 3 (1 , 1 , , 1) = (0 ,- 1 , 1 , 1) Thus ~ z 2 was already orthogonal to ~ z 1 . Next we have ~w 3 = z 3- ~ z 3 ~w 1 k ~w 1 k 2 ~w 1- ( ~ z 3 ~w 2 ) k ~w 2 k 2 ~w 2 = (3 , , 1 , 1)- (3 , , 1 , 1) (1 , 1 , , 1) 3 (1 , 1 , , 1)- (3 , , 1 , 1) (0 ,- 1 , 1 , 1) 3 (0 ,- 1 , 1 , 1) = (3 , , 1 , 1)- 4 3 (1 , 1 , , 1)- 2 3 (0 ,- 1 , 1 , 1) = 1 3 (5 ,- 2 , 1 ,- 3) Thus, the set { ~w 1 , ~w 2 , ~w 3 } is an orthogonal basis for span { ~ z 1 ,~ z 2 ,~ z 3 } . To obtain an orthonor- mal basis, we normalize each vector to get 1 3 (1 , 1 , , 1) , 1 3 (0 ,- 1 , 1 , 1) , 1 39 (5 ,- 2 , 1 ,- 3) . b) { (1 , 1 , , 1 , 0) , (- 1 , , 1 , 1 , 1) , (1 , 1 , , 2 , 1) } Solution: Denote the given basis by ~ z 1 = (1 , 1 , , 1 , 0), ~ z 2 = (- 1 , , 1 , 1 , 1), ~ z 3 = (1 , 1 , , 2 , 1). Let ~w 1 = ~ z 1 . Then, we get ~w 2 = perp ~w 1 ( ~ z 2 ) = ~ z 2- proj ~w 1 ( ~ z 2 ) = ~ z 2- ~ z 2 ~w 1 k ~w 1 k 2 ~w 1 = (- 1 , , 1 , 1 , 1)- 1 3 ( (- 1 , , 1 , 1 , 1) (1 , 1 , , 1 , 0) ) (1 , 1 ,...
View Full Document

## This note was uploaded on 10/12/2010 for the course MATH 235 taught by Professor Celmin during the Fall '08 term at Waterloo.

### Page1 / 5

A5_soln - Math 235 Assignment 5 Solutions 1. Use the...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online