alg-07-36

# alg-07-36 - 4.3 36 SYLOW THEOREMS AND APPLICATIONS 55 4.3...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4.3. 36. SYLOW THEOREMS AND APPLICATIONS 55 4.3 36. Sylow Theorems and Applications The structures of finite abelian groups are well classified. The structures of finite nonabelian groups are much more complicate (Think about S n , A n , D n , etc). Sylow theorems are very useful in studying finite nonabelian groups. Here we survey the classical results of Sylow theorems and apply them to examples. Def 4.30. Let p be a fixed prime. A group G is a p-group if every element in G has order a power of p . A subgroup of a group G is a p-subgroup of G if the subgroup is itself a p-group. Thm 4.31 (Cauchy’s Theorem). Let G be a finite group. Let p be a prime factor of | G | . Then G has a subgroup of order p . Cor 4.32. A finite group G is a p-group if and only if | G | is a power of p . Proof by Cauchy’s Theorem. If | G | is a power of p , then the order of every element g of G divides | G | . So the order of g must be a power of p . Thus G is a p-group....
View Full Document

## This note was uploaded on 10/12/2010 for the course MATH 5310 taught by Professor Staff during the Spring '08 term at Auburn University.

### Page1 / 2

alg-07-36 - 4.3 36 SYLOW THEOREMS AND APPLICATIONS 55 4.3...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online