This preview has blurred sections. Sign up to view the full version!
View Full Document
Tutorials #1 One-Dimensional Kinematics with Constant Acceleration Learning Goal: To understand the meaning of the variables that appear in the equations for one- dimensional kinematics with constant acceleration. Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems. The kinematic equations for such motion can be written as , , where the symbols are defined as follows: is the position of the particle; is the initial position of the particle; is the velocity of the particle; is the initial velocity of the particle; is the acceleration of the particle. In anwering the following questions, assume that the acceleration is constant and nonzero: . Part A The quantity represented by is a function of time (i.e., is not constant). ANSWER: true false One-Dimensional Kinematics with Constant Acceleration Part A Correct Part B The quantity represented by is a function of time (i.e., is not constant). ANSWER: Correct Recall that represents an initial value, not a variable. It refers to the position of an object at some initial moment. Part C The quantity represented by is a function of time (i.e., is not constant). ANSWER: true false Correct Part D The quantity represented by is a function of time (i.e., is not constant). ANSWER: One-Dimensional Kinematics with Constant Acceleration Part C Correct The velocity always varies with time when the linear acceleration is nonzero. Part E Which of the given equations is not an explicit function of and is therefore useful when you don't know or don't need the time? ANSWER: Correct Part F A particle moves with constant acceleration . The expression represents the particle's velocity at what instant in time? ANSWER: One-Dimensional Kinematics with Constant Acceleration Part E Correct More generally, the equations of motion can be written as and . Here is the time that has elapsed since the beginning of the particle's motion, that is, , where is the current time and is the time at which we start measuring the particle's motion. The terms and are, respectively, the position and velocity at . As you can now see, the equations given at the beginning of this problem correspond to the case , which is a convenient choice if there is only one particle of interest. To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as . That is, particle A starts moving at time with velocity , from . At time , particle B has twice the acceleration, half the velocity, and the same position that particle A had at time .... View Full Document
PHYS101-problem-book
midterm_1bkey
physicslens
chem 1 lab
Post lab
Reactions of Copper
Lecture4
Ch 09 HW BB
Lecture 6 on Fluid Mechanics
Notes on Particle Dynamics
55315748-14
Physical Simulation
Copyright © 2015. Course Hero, Inc.
Course Hero is not sponsored or endorsed by any college or university.