Unformatted text preview: 5. Show that if f : R n → R is a function that satisﬁes the following conditions − f ( v ) ≥ 0 for all v ∈ R n − f ( v ) = 0 iﬀ v = 0 − f ( αv ) =  α  f ( v ) for all α ∈ R and all v ∈ R n − The set { v : f ( v ) ≤ 1 } is convex then f deﬁnes a norm on R n . 6. Show that for p ≥ 1 and p − 1 + q − 1 = 1, k x k p = max y 6 =0  y T x  k y k q , x ∈ R n . Hint : You can use Hölder’s inequality for part of the proof....
View
Full
Document
 Fall '10
 Chandrashekharan
 Linear Algebra, Invertible matrix, rank matrix, column rank matrix

Click to edit the document details