{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW2 - x = 5(4 Use the above expansion to approximate(a at x...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
MATH314, Modeling Realizable Phenomena HW 1 Gidon Eshel, Physics Department, Bard College Annandale-on-Hudson, NY 12504-5000, x-7232, [email protected] . Due Thursday 9/23/2010, in hard copy, succinct, typed and neatly printed form. (1) Which of the following (with Greek letters denoting numerical constants) is linear? (a) α sin( x ) (b) β x (c) γ x 2 (d) ( δx ) ln( x ) (e) η/x (2) Expand symbolically the function (a) above in a Taylor series about ¯ x , including ex- plicitly orders 0–3. (3) Write down explicitly the above expansion around ¯
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x = 5. (4) Use the above expansion to approximate (a) at x = 4 . 8 , 4 . 9 , 5 , 5 . 1 , 5 . 2 using, in each of the above five cases, order 0, orders 0 and 1, orders 0–2 and orders 0–3 (for a total of 20 approximations). (5) Linearize about (¯ x, ¯ y ) dx dt = αxy + βx 2 dy dt = γxy 2-δy 2 cos( x ) where all Greek letters denote constant coefficients, and Roman letters denote variables. 1...
View Full Document

{[ snackBarMessage ]}