6 - Copyright c 2009 by Karl Sigman Conditional expectation...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Copyright c 2009 by Karl Sigman Conditional expectation Here we review some basic properties of conditional expectation that are useful for doing computations and give several examples to help the reader memorize these properties. (A more rigorous account can be found, for example, in Karlin and Taylor, Pages 5-9 in Ch. 1 and then Pages 302305 in Ch. 6.) Recall for two rvs X and Y that E ( X | Y ) is itself a rv and is a function of Y , say g ( Y ); so then for example E ( X | Y = i ) = g ( i ). The idea is that besides the part of X determined by Y , the rest of X is averaged out with the expected value. By treating Y as if it was a constant, and then integrating (averaging) out the rest yields the conditional expectation. If X is determined by Y (for example X = Y or some function of Y ), then E ( X | Y ) = X ; nothing has been averaged out. Basic properties 1. E ( X ) = E [ E ( X | Y )] for any rv Y . For example suppose X = N n =1 U n , where the U i are iid and independent of the rv N . Letting Y = N yields E ( X | Y ) = NE ( U ), and thus...
View Full Document

Page1 / 2

6 - Copyright c 2009 by Karl Sigman Conditional expectation...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online