{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

p0237 -

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 118 CHAPTER 2. PARTICLE KINEMATICS 2.37 Chapter 2, Problem 37 Problem: In the system shown, there are two pulleys and three weights connected as shown. The upper pulley is fixed in space while the lower pulley can move. (a) Determine the velocity, v3 , and acceleration, a3 , of Weight 3 as a function of x1 , x2 , x1 and x2 . ˙˙¨ ¨ (b) How many degrees of freedom does this system have? (c) Compute the velocity and acceleration of Weight 3 for x1 = −4 cm/sec, x2 = −3 cm/sec, ˙ ˙ x1 = −2.5 cm/sec2 and x2 = −2 cm/sec2 . ¨ ¨ ................................................................................................................................................................................................................................................................................................... . ................................................................................................................................................................................................................................................................................................... ................................................................................................................................................................................................................................................................................................... ................................................................................................................................................................................................................................................................................................ ...................................................................................................................................................... . . . . ................................................................................................................................................................................................................................................................................................. .. . .. . . .. .. .. .. . . . . .. ... .. .. ... . . . ....... . .......... . . . ........... . . . . ............... . ............... .. . . . . . . . .................. .... . . . . . . . ................... . . ................... . . . . . .. . . . ............. . . . . . . ........... ..... . . . . ................. . ................ . . . . .. ..... .. . ............... . . . .............. . . . . . ........... . . .. ..... . . . ............... .. . . . . ........... . . . . . .... .... . . . . . . . .. .. . . . 1 . .... . . . . . . . . . . . . . . . . . . . . . p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................ . . . . . . ........................ . . . . ........................ . .. . . . ........................ . . . . . ........................ . . . ........................ ........ ....... . . . . ........................ . . .. 2 ........................ . . .. ........................ .......... . . . ..... . ........................ .............. . . ........... . ........................ ............... . . . .......... . . ............... . . . .. . ......... . . ....... .. .. . .. .. . . . ................ ..... . . ................. .... . ....... ........ .... .... . .. . . .. ................ . 3 .. .. . . .................. . . .. . . . .................. . . ............. . . . . .............. . .... . . . . ........ ... . . .. . . . ..... ... . . . . ........... . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......................... . . . .. ......................... . . . . ......................... . .. . . . ......................... ..... . . .... ......................... . . . . .... .... ......................... . . . ......................... . . ......................... . . . . . . ......................... . . . ......................... . . . ......................... . . . . . . . . . . . . . . .. . . .. . . .. . . .. . . .. . . . .. . . . ............ . . . . . ......................... . . . ............ . ......................... .. ......................... .. ......................... ........ ....... . ......................... ......................... ......................... ......................... ......................... ......................... • • x x 1 x • x i 2 3 Solution: (a) Conservation of cable length tells us that x1 + xp = constant and (x2 − xp ) + (x3 − xp ) = constant and x2 + x3 − 2xp = 0 ˙ ˙ ˙ Thus, the speeds in this system are given by x1 + xp = 0 ˙ ˙ Therefore, the speed of Weight 3 is Similarly, the acceleration of Weight 3 is x3 = 2xp − x2 = −2x1 − x2 ˙ ˙ ˙ ˙ ˙ x3 = −2¨1 − x2 ¨ x ¨ and a3 = − (2¨1 + x2 ) i x ¨ So, the velocity and acceleration vectors for Weight 3 are v3 = − (2x1 + x2 ) i ˙ ˙ (b) Because any two quantities can be prescribed arbitrarily, this system has 2 degrees of freedom. (c) For the given values of x1 = −4 cm/sec, x2 = −3 cm/sec, x1 = −2.5 cm/sec2 and x2 = −2 cm/sec2 , ˙ ˙ ¨ ¨ we have v3 a3 = − [2(−4) + (−3)] i = 11 i (cm/sec) (cm/sec2 ) = −[2 (−2.5) + (−2)] i = 7 i ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern