p0241 - 2.41. CHAPTER 2, PROBLEM 41 121 2.41 Chapter 2,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2.41. CHAPTER 2, PROBLEM 41 121 2.41 Chapter 2, Problem 41 Problem: A boy riding in a small cart throws a ball with initial speed vo as seen by a stationary observer at an angle α to the horizontal and catches the ball at a time t after he throws it. The cart follows a straight-line path inclined at an angle φ to the horizontal. The speed of the cart at the instant the boy throws the ball is V and it has constant deceleration of magnitude a. Determine the time t. Ignore effects of friction on the ball’s motion and express your answer as a function of φ, α, vo and gravitational acceleration, g . HINT: Solve using the xz coordinate system and simplify your answer by making use of the fact that sin(α − φ) = sin α cos φ − cos α sin φ. z • vo • α V g = −g k ....... ... ........................................ ................. . ............................................................................................................................................................................................................................. ................................................................................................................................................................................................................................ ...................................................................................................................................................................................................................................... .. ... ........................................................................................................................................................................................................................................... ............................................................................................................................................................................................................................................... . ................................................................................................................................................................................................................................................... ...... . ........................................................................................................................................................................................................................................................ ......................................................................................................................................................................................................................................................... ............................................................................................................................................................................................................................................................................................................ ....................................................................................................................................................................................................................................................................................................................... ................................................................................................................................................................................................................................................................ . ...... ... ................................................................................................................................. ............................................................................... ................. ..... ................. .. ..... .... ................................................................................................................................................................................................................................................................................. . ..... ................................................................. ........ ..... ........................................................................................................................................................... ...................................................................... . ...................................... ............................................................................................................................................................................................................................................................................................... ... ................................................................................................................................................................................................................................................................................................... ....................................................................................................................................................................................................................................................................................................... ......... ... ... . ................................................................................................................................................................................................................................................................................................................ . φ x So ut on: Ignor ng fr c ona forces he on y force ac ng on he ba s grav y Hence he hor zon a (x) componen of s ve oc y s cons an wh e he ver ca (z ) componen decreases due o g No ng ha we are g ven he abso u e ve oc y e he ve oc y re a ve o a s a onary frame he ve oc y componen s of he ba n a f xed frame of reference are vx = vo cos α and vz = vo s n α − gt In egra ng over me and e ng he ba ’s n a pos on n he f xed coord na e be xB (0) = xo zB (0) = zo he ba ’s pos on n he f xed frame s xB (t) = xo + vo t cos α and zB (t) = zo + vo t s n α − 1 gt2 2 In egra ng and e ng he or g n be he same as he po n where he ba beg ns s ra ec ory he pos on of he car s g ven by xA (t) = xo + V t cos φ − 1 at2 cos φ 2 In genera he re a ve pos on of he ba and zA (t) = zo + V t s n φ − 1 at2 s n φ 2 Turn ng o he car ’s pos on because has cons an dece era on of magn ude a c ear y he ve oc y componen s are vx = V cos φ − at cos φ ˜ and vz = V s n φ − at s n φ ˜ n he car -f xed coord na e sys em s rB/A = rB − rA For he prob em a hand we are seek ng he so u on for wh ch rB/A = 0 Hence we conc ude ha for he x d rec on xo + vo t cos α = xo + V t cos φ − 1 at2 cos φ 2 ⇒ vo cos α = V cos φ 1 − at 2V 122 Similarly, for the z -direction: zo + vo t sin α − 1 gt2 = zo + V t sin φ − 1 at2 sin φ 2 2 Now, from the x-direction equation, there follows 1− vo cos α at = 2V V cos φ ⇒ CHAPTER 2. PARTICLE KINEMATICS vo sin α − 1 gt = V sin φ 1 − 2 at 2V Substituting this result into the z -direction equation yields vo sin α − 1 gt = vo cos α tan φ 2 Hence, we find that 1 2 gt = vo (sin α − cos α tan φ) = vo (sin α cos φ − cos α sin φ) cos φ =sin(α−φ) Therefore, the time, t, is t= 2vo sin(α − φ) g cos φ ...
View Full Document

This note was uploaded on 10/15/2010 for the course AME 301 at USC.

Ask a homework question - tutors are online