Maths Chapters - MATH1119 Notes By Eric Hua Contents...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH1119 Notes By Eric Hua Contents Chapter 1. Linear Equations in Linear Algebra 2 1.1 Systems of Linear Equations . . . . . . . . . . . . . . . 2 1.2 Row reduction and echelon forms . . . . . . . . . . . 4 1.3 Vector Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Equation A~x = ~ b . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Solution sets of linear systems . . . . . . . . . . . . . . 11 1.7 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . 12 1.8 Introduction to Linear Transformation . . . . . . . 13 1.9 The matrix of a linear transformation . . . . . . . . 14 1.10 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 2. Matrix Algebra 17 2.1 Matrix operations . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 The Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . 19 2.3 Characterization of Invertible Matrices . . . . . . 20 2.6 The Leontief Input-output Model . . . . . . . . . . . 21 2.8 Subspaces of R n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 Dimension and Rank . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 3. Determinants 26 3.1 Introduction to Determinants . . . . . . . . . . . . . . . 26 3.2 Properties of Determinants . . . . . . . . . . . . . . . . . 27 3.3 Cramers rule, volume and linear transforma- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 4. Vector Spaces 31 4.9 Applications to Markov Chains . . . . . . . . . . . . . 31 1 Chapter 1. Linear Equations in Linear Algebra 1.1 Systems of Linear Equations Definition 1 A linear equation in variables x 1 ,x 2 ,...,x n has the form a 1 x 1 + a 2 x 2 + a 3 x 3 + + a n x n = d where the numbers a 1 ,...,a n R are the equations coefficients and d R is the constant. An n-tuple ( s 1 ,s 2 ,...,s n ) R n is a solution of, or satisfies, that equation if substituting the numbers s 1 , ..., s n for the variables gives a true statement: a 1 s 1 + a 2 s 2 + ... + a n s n = d . A system of linear equations a 1 , 1 x 1 + a 1 , 2 x 2 + + a 1 ,n x n = d 1 a 2 , 1 x 1 + a 2 , 2 x 2 + + a 2 ,n x n = d 2 . . . a m, 1 x 1 + a m, 2 x 2 + + a m,n x n = d m has the solution ( s 1 ,s 2 ,...,s n ) if that n-tuple is a solution of all of the equations in the system. Finding the set of all solutions is solving the system. Example 1 The ordered pair (- 1 , 5) is a solution of this system. 3 x 1 + 2 x 2 = 7- x 1 + x 2 = 6 In contrast, (5,-1) is not a solution. Definition 2 If we have two linear systems and they have the same solution set then the two linear systems are called equivalent. Theorem 1 The linear system has, 1. no solution 2. one solution 3. infinitely many solutions....
View Full Document

This note was uploaded on 10/16/2010 for the course BCOM 1402 taught by Professor Smith during the Spring '10 term at Agnes Scott College.

Page1 / 33

Maths Chapters - MATH1119 Notes By Eric Hua Contents...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online