{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

UCR SOC 005 STAT SPR 2010 Session 7 V1

UCR SOC 005 STAT SPR 2010 Session 7 V1 -...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Session 7 Monday, 12 April 2010 David Swanson Watkins 1223 [email protected] SOCIOLOGY 005 STATISTICAL ANALYSIS
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Today’s Schedule Lecture& Discussion:     ‘Centrality’ and its measurement, Part 2 Description of Assignment #2
Background image of page 2
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Recall the definition of the Arithmetic  Mean Arithmetic Mean    Population     µ  = (x 1  + x 2  + … + x n )/N  = ( Σ x i )/N        Sample    m  = (x 1  + x 2  + … + x n )/n  = ( Σ x i )/n
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science A Random Variable and Expectation* If a set of data is denoted by X = (x1, x2, ..., xn), then the  sample’s arithmetic mean can be denoted by m. The arithmetic mean of the entire population (from which the  sample is drawn) can be denoted by symbol  μ  (Greek: mu) * Largely taken From Wikipedia:  http://en.wikipedia.org/wiki/Arithmetic_mean, last accessed August 2008
Background image of page 4
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science A Random Variable and Expectation Or, for a random number that has a defined mean,  μ  is the  probabilistic mean or expected value of the random number.  If the set X is a collection of random numbers with probabilistic  mean of  μ , then for any individual sample, xi, from that  collection,  μ  = E{xi} is the expected value of that sample.  In practice, the difference between  μ  and m is that  μ  is  typically unobservable because one observes only a sample  rather than the whole population, and if the sample is drawn  randomly, then one may treat m, but not  μ , as a random  variable, attributing a probability distribution to it (the sampling  distribution of the mean).
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science A Random Variable and Expectation In practice, the difference between  μ  and  is that  μ  is typically  unobservable because one observes only a sample rather  than the whole population, and if the sample is drawn  randomly, then one may treat , but not  μ , as a random  variable, attributing a probability distribution to it (the sampling  distribution of the mean).
Background image of page 6
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}