UCR SOC 005 STAT SPR 2010 Session 10 V2

UCR SOC 005 STAT SPR 2010 Session 10 V2 -...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Session 10 Monday, 19 April 2010 David Swanson Watkins 1223 [email protected] SOCIOLOGY 005  STATISTICAL ANALYSIS
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Today’s Schedule    ‘Dispersion’ and its measurement, Part  1
Background image of page 2
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science What is dispersion?
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Statistical Dispersion* In statistics, (statistical) dispersion (also called  statistical variability or variation) is variability or  spread in a variable or a probability distribution.  Common examples of measures of statistical  dispersion are the variance, standard deviation and  interquartile range. Dispersion is contrasted with location or central  tendency, and together they are the most used  properties of distributions. *From Wikipedia http://en.wikipedia.org/wiki/Statistical_dispersion, last  accessed, August 2008
Background image of page 4
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Statistical Dispersion* Sources of statistical dispersion   In the physical (largely experimental) sciences, such variability may result  only from random measurement errors: instrument measurements are  often not perfectly precise, i.e., reproducible. One may assume that the  quantity being measured is unchanging and stable, and that the variation  between measurements is due to observational error.   In the biological and social sciences (largely non –experimental), this 
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/16/2010 for the course SOC 5 taught by Professor Burke during the Spring '08 term at UC Riverside.

Page1 / 24

UCR SOC 005 STAT SPR 2010 Session 10 V2 -...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online