UCR SOC 005 STAT SPR 2010 Session 16 V2

UCR SOC 005 STAT SPR 2010 Session 16 V2 -...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Session 16 Monday, 3 May 2010 David Swanson Watkins 1223 David.swanson@ucr.edu SOCIOLOGY 005  STATISTICAL ANALYSIS
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Today’s Schedule Assignment # 2 Returned    Sampling: Basics and Drawing  Inferences from Samples, Part 1 Description of Assignment 3
Background image of page 2
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Today’s Schedule      Sampling: Basics and Drawing  Inferences from Samples, Part 1
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Sampling Concepts & Terms
Background image of page 4
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Why Sample? WHY SAMPLE?           THE TRIPLE CONSTRAINT                             Precision                                    |                                 /  \                          Cost    Time
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Basic Sampling  Terminology and Concepts
Background image of page 6
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Some Definitions N = the number of cases in the  sampling frame n = the number of cases in the sample N C n  = the number of combinations  (subsets) of n from N f = n/N = the sampling fraction
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Two Major Types of Sampling  Methods uses some form of random  selection requires that each unit have a  known (often equal)  probability of being selected                                                 selection is systematic or  selection is haphazard, but  not random Probability Sampling Probability Sampling Non-Probability Non-Probability Sampling Sampling
Background image of page 8
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education  in Geospatial Science Types of Probability Sampling Designs Simple Random Sampling Stratified Sampling Systematic Sampling Cluster (Area) Sampling Multistage Sampling
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 35

UCR SOC 005 STAT SPR 2010 Session 16 V2 -...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online