UCR SOC 005 STAT SPR 2010 Session 17 V2

# UCR SOC 005 STAT SPR 2010 Session 17 V2 -...

This preview shows pages 1–9. Sign up to view the full content.

THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Session 17 Wednesday, 5 May 2010 David Swanson Watkins 1223 [email protected] SOCIOLOGY 005  STATISTICAL ANALYSIS

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Today’s Schedule   Drawing inferences from samples, Part  2
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Normal Curve Formula P(X) =     {1/((2 Πσ 2 ) (.5) )} {e (-(X-μ) 2 /(2 σ 2 )) } (1) You only need to know the mean ( μ)  and the standard  deviation ( ) σ  of a set of numbers  to create the curve (2)  in inferential statistics, one substitutes the sample mean     ( )  for the population mean ( μ)  and the sample’s        standard error (se) for the population       standard deviation ( ) σ

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science A Normal Curve
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Another Normal Curve

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Both of the preceding Normal  Curves were generated from P(X) =     {1/((2 Πσ 2 ) (.5) )} {e (-(X-μ) 2 /(2 σ 2 )) } Using the mean ( μ)  and the standard deviation ( ) σ and in inferential statistics, recall that one substitutes the  sample mean ( )  for the population mean ( μ)  and the  sample’s standard error (se) for the population standard  deviation ( σ to generate a  “SAMPLING DISTRIBUTION”
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Working with the Normal Distribution               CENTRAL LIMIT THEOREM* If x 1 , x 2 , …., x n  constitute a random sample from an infinite  population having mean μ , variance  σ 2  and the moment  generating function M x (t) then the limiting distribution of             Z = ( f8e5 X   – μ)/( σ /√n).  As n      ∞  is the standard normal distribution *Freund, J. and R. Walpole. 1987. Mathematical Statistics 4 th   Edition. Englewood Cliffs, NJ: Prentice Hall (pp. 274-277)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
THE UNIVERSITY OF CALIFORNIA RIVERSIDE The University of   Mississippi Institute for Advanced Education in Geospatial Science Working with the Normal Distribution Suppose that all possible samples of size n are drawn (with
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/16/2010 for the course SOC 5 taught by Professor Burke during the Spring '08 term at UC Riverside.

### Page1 / 59

UCR SOC 005 STAT SPR 2010 Session 17 V2 -...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online