applied cryptography - protocols, algorithms, and source code in c

5 peggy complies for each of the n new hard problems

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: omorphism between H and either G1 or G2. Victor could just as well have generated this by himself. Because Victor can create a simulation of the protocol, it can be proven to be zero-knowledge. Hamiltonian Cycles A variant of this example was first presented by Manuel Blum [196]. Peggy knows a circular, continuous path along the lines of a graph that passes through each point exactly once. This is called a Hamiltonian cycle. Finding a Hamiltonian cycle is another hard problem. Peggy has this piece of information—she probably got it by creating the graph with a certain Hamiltonian cycle—and this is what she wants to convince Victor that she knows. Peggy knows the Hamiltonian cycle of a graph, G. Victor knows G, but not the Hamiltonian cycle. Peggy wants to prove to Victor that she knows this Hamiltonian cycle without revealing it. This is how she does it: (1) Peggy randomly permutes G. She moves the points around and changes their labels to make a new graph, H. Since G and H are topologically isomorphic (i.e., the same graph), if she knows the Hamiltonian cycle of G then she can easily find the Hamiltonian cycle of H. If she didn’t create H herself, determining the isomorphism between two graphs would be another hard problem; it could also take centuries of computer time. She then encrypts H to get H´. (This has to be a probabilistic encryption of each line in H, that is, an encrypted 0 or an encrypted 1 for each line in H.) (2) Peggy gives Victor a copy of H´. (3) Victor asks Peggy either to: (a) prove to him that H´ is an encryption of an isomorphic copy of G, or (b) show him a Hamiltonian cycle for H. (4) Peggy complies. She either: (a) proves that H´ is an encryption of an isomorphic copy of G by revealing the permutations and decrypting everything, without showing a Hamiltonian cycle for either G or H, or (b) shows a Hamiltonian cycle for H by decrypting only those lines that constitute a Hamiltonian cycle, without proving that G and H are topologically isomorphic. (5) Peggy and Victor repeat steps (1) through (4) n times. If Peggy is hones...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online