applied cryptography - protocols, algorithms, and source code in c

544 mbps communications channel you can store 650

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: er of matches at each position. If they are aligned right, the proportion of matches jumps suddenly—the exact percentages depend on the plaintext language. From this point cryptanalysis is easy. It’s like the index of coincidence, but with just two “periods” to compare [904]. Don’t do it. The idea of a one-time pad can be easily extended to binary data. Instead of a one-time pad consisting of letters, use a one-time pad of bits. Instead of adding the plaintext to the one-time pad, use an XOR. To decrypt, XOR the ciphertext with the same one-time pad. Everything else remains the same and the security is just as perfect. This all sounds good, but there are a few problems. Since the key bits must be random and can never be used again, the length of the key sequence must be equal to the length of the message. A one-time pad might be suitable for a few short messages, but it will never work for a 1.544 Mbps communications channel. You can store 650 megabytes worth of random bits on a CD-ROM, but there are problems. First, you want exactly two copies of the random bits, but CD-ROMs are economical only for large quantities. And second, you want to be able to destroy the bits already used. CD-ROM has no erase facilities except for physically destroying the entire disk. Digital tape is a much better medium for this sort of thing. Even if you solve the key distribution and storage problem, you have to make sure the sender and receiver are perfectly synchronized. If the receiver is off by a bit (or if some bits are dropped during the transmission), the message won’t make any sense. On the other hand, if some bits are altered during transmission (without any bits being added or removed—something far more likely to happen due to random noise), only those bits will be decrypted incorrectly. But on the other hand, a one-time pad provides no authenticity. One-time pads have applications in today’s world, primarily for ultra-secure low-bandwidth channels. The hotline between the United States and the former Soviet Union was (is it still...
View Full Document

Ask a homework question - tutors are online