{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

applied cryptography - protocols, algorithms, and source code in c

7 race integrity primitives evaluation ripe 258

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6 International Association for Cryptologic Research (IACR) 25.7 RACE Integrity Primitives Evaluation (RIPE) 25.8 Conditional Access for Europe (CAFE) 25.9 ISO/IEC 9979 25.10 Professional, Civil Liberties, and Industry Groups 25.11 Sci.crypt 25.12 Cypherpunks 25.13 Patents 25.14 U.S. Export Rules 25.15 Foreign Import and Export of Cryptography 25.16 Legal Issues Afterword by Matt Blaze Part V—Source Code References Index Products | Contact Us | About Us | Privacy | Ad Info | Home Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is prohibited. Read EarthWeb's privacy statement. To access the contents, click the chapter and section titles. Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C (cloth) Go! Keyword Brief Full Advanced Search Search Tips (Publisher: John Wiley & Sons, Inc.) Author(s): Bruce Schneier ISBN: 0471128457 Publication Date: 01/01/96 Search this book: Go! Previous Table of Contents Next ----------- Foreword By Whitfield Diffie The literature of cryptography has a curious history. Secrecy, of course, has always played a central role, but until the First World War, important developments appeared in print in a more or less timely fashion and the field moved forward in much the same way as other specialized disciplines. As late as 1918, one of the most influential cryptanalytic papers of the twentieth century, William F. Friedman’s monograph The Index of Coincidence and Its Applications in Cryptography, appeared as a research report of the private Riverbank Laboratories [577]. And this, despite the fact that the work had been done as part of the war effort. In the same year Edward H. Hebern of Oakland, California filed the first patent for a rotor machine [710], the device destined to be a mainstay of military cryptography for nearly 50 years. After the First World War, however, things began to change. U.S. Army and Navy organizations, working...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online