applied cryptography - protocols, algorithms, and source code in c

A cryptanalyst looking for those redundancies will

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y cryptosystem that achieves perfect secrecy. Perfect secrecy aside, the ciphertext unavoidably yields some information about the corresponding plaintext. A good cryptographic algorithm keeps this information to a minimum; a good cryptanalyst exploits this information to determine the plaintext. Cryptanalysts use the natural redundancy of language to reduce the number of possible plaintexts. The more redundant the language, the easier it is to cryptanalyze. This is the reason that many real-world cryptographic implementations use a compression program to reduce the size of the text before encrypting it. Compression reduces the redundancy of a message as well as the work required to encrypt and decrypt. The entropy of a cryptosystem is a measure of the size of the keyspace, K. It is approximated by the base two logarithm of the number of keys: H(K) = log2 K A cryptosystem with a 64-bit key has an entropy of 64 bits; a cryptosystem with a 56-bit key has an entropy of 56 bits. In general, the greater the entropy, the harder it is to break a cryptosystem. Previous Table of Contents Next Products | Contact Us | About Us | Privacy | Ad Info | Home Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is prohibited. Read EarthWeb's privacy statement. To access the contents, click the chapter and section titles. Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C (cloth) Go! Keyword Brief Full Advanced Search Search Tips (Publisher: John Wiley & Sons, Inc.) Author(s): Bruce Schneier ISBN: 0471128457 Publication Date: 01/01/96 Search this book: Go! Previous Table of Contents Next ----------- Unicity Distance For a message of length n, the number of different keys that will decipher a ciphertext message to some intelligible plaintext in the same language as the original plaintext (such as an Engl...
View Full Document

This note was uploaded on 10/18/2010 for the course MATH CS 301 taught by Professor Aliulger during the Fall '10 term at Koç University.

Ask a homework question - tutors are online