applied cryptography - protocols, algorithms, and source code in c

Attacks against poker protocols cryptographers have

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: that everyone can make sure that no one has cheated. Additional cards can be dealt in the same manner. If Bob or Carol wants a card, either one can take the encrypted deck and go through the protocol with Alice. If Alice wants a card, whoever currently has the deck sends her a random card. Previous Table of Contents Next Products | Contact Us | About Us | Privacy | Ad Info | Home Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is prohibited. Read EarthWeb's privacy statement. To access the contents, click the chapter and section titles. Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C (cloth) Go! Keyword Brief Full Advanced Search Search Tips (Publisher: John Wiley & Sons, Inc.) Author(s): Bruce Schneier ISBN: 0471128457 Publication Date: 01/01/96 Search this book: Go! Previous Table of Contents Next ----------- Ideally, step (10) would not be necessary. All players shouldn’t be required to reveal their hands at the end of the protocol; only those who haven’t folded. Since step (10) is part of the protocol designed only to catch cheaters, perhaps there are improvements. In poker, one is only interested in whether the winner cheated. Everyone else can cheat as much as they want, as long as they still lose. (Actually, this is not really true. Someone can, while losing, collect data on another player’s poker style.) So, let’s look at cases in which different players win. If Alice wins, she reveals her hand and her keys. Bob can use Alice’s private key to confirm that Alice performed step (2) correctly—that each of the 52 messages corresponded to a different card. Carol can confirm that Alice is not lying about her hand by encrypting the cards with Alice’s public key and verifying that they are the same as the encrypted messages she sent to her in step (8). If either Bob or Carol wins, the winner reveals his han...
View Full Document

This note was uploaded on 10/18/2010 for the course MATH CS 301 taught by Professor Aliulger during the Fall '10 term at Koç University.

Ask a homework question - tutors are online