applied cryptography - protocols, algorithms, and source code in c

Applied cryptography protocols algorithms and source code in c

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ut Us | Privacy | Ad Info | Home Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is prohibited. Read EarthWeb's privacy statement. To access the contents, click the chapter and section titles. Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C (cloth) Go! Keyword Brief Full Advanced Search Search Tips (Publisher: John Wiley & Sons, Inc.) Author(s): Bruce Schneier ISBN: 0471128457 Publication Date: 01/01/96 Search this book: Go! Previous Table of Contents Next ----------- 20.7 Cellular Automata A new and novel idea, studied by Papua Guam [665], is the use of cellular automata in public-key cryptosystems. This system is still far too new and has not been studied extensively, but a preliminary examination suggests that it may have a cryptographic weakness similar to one seen in other cases [562]. Still, this is a promising area of research. Cellular automata have the property that, even if they are invertible, it is impossible to calculate the predecessor of an arbitrary state by reversing the rule for finding the successor. This sounds a whole lot like a trapdoor one-way function. 20.8 Other Public-Key Algorithms Many other public-key algorithms have been proposed and broken over the years. The Matsumoto-Imai algorithm [1021] was broken in [450]. The Cade algorithm was first proposed in 1985, broken in 1986 [774], and then strengthened in the same year [286]. In addition to these attacks, there are general attacks for decomposing polynomials over finite fields [605]. Any algorithm that gets its security from the composition of polynomials over a finite field should be looked upon with skepticism, if not outright suspicion. The Yagisawa algorithm combines exponentiation mod p with arithmetic mod p – 1 [1623]; it was broken in [256]. Another public-key algorithm, Tsujii-Kurosawa-Itoh-Fujioka-Matsumoto [1548] is insecure [94...
View Full Document

This note was uploaded on 10/18/2010 for the course MATH CS 301 taught by Professor Aliulger during the Fall '10 term at Koç University.

Ask a homework question - tutors are online