{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

applied cryptography - protocols, algorithms, and source code in c

# Information theory in practice while these concepts

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: edundancy is 3.4 bits/letter. This means that each English character carries 3.4 bits of redundant information. An ASCII message that is nothing more than printed English has 1.3 bits of information per byte of message. This means it has 6.7 bits of redundant information, giving it an overall redundancy of 0.84 bits of information per bit of ASCII text, and an entropy of 0.16 bits of information per bit of ASCII text. The same message in BAUDOT, at 5 bits per character, has a redundancy of 0.74 bits per bit and an entropy of 0.26 bits per bit. Spacing, punctuation, numbers, and formatting modify these results. Security of a Cryptosystem Shannon defined a precise mathematical model of what it means for a cryptosystem to be secure. The goal of a cryptanalyst is to determine the key K, the plaintext P, or both. However, he may be satisfied with some probabilistic information about P: whether it is digitized audio, German text, spreadsheet data, or something else. In most real-world cryptanalysis, the cryptanalyst has some probabilistic information about P before he even starts. He probably knows the language of the plaintext. This language has a certain redundancy associated with it. If it is a message to Bob, it probably begins with “Dear Bob.” Certainly “Dear Bob” is more probable than “e8T&ampg [, m.” The purpose of cryptanalysis is to modify the probabilities associated with each possible plaintext. Eventually one plaintext will emerge from the pile of possible plaintexts as certain (or at least, very probable). There is such a thing as a cryptosystem that achieves perfect secrecy: a cryptosystem in which the ciphertext yields no possible information about the plaintext (except possibly its length). Shannon theorized that it is only possible if the number of possible keys is at least as large as the number of possible messages. In other words, the key must be at least as long as the message itself, and no key can be reused. In still other words, the one-time pad (see Section 1.5) is the onl...
View Full Document

{[ snackBarMessage ]}