applied cryptography - protocols, algorithms, and source code in c

It has a new message order and every step except

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ge, and the third 16 bytes of X to be the XOR of the first 16 bytes of X and the second 16 bytes of X. Do step (4). Repeat steps (5) and (4) with every 16 bytes of the message, in turn. (6) The output is the first 16 bytes of X. Although no weaknesses in MD2 have been found (see [1262]), it is slower than most other suggested hash functions. Previous Table of Contents Next Products | Contact Us | About Us | Privacy | Ad Info | Home Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is prohibited. Read EarthWeb's privacy statement. To access the contents, click the chapter and section titles. Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C (cloth) Go! Keyword Brief Full Advanced Search Search Tips (Publisher: John Wiley & Sons, Inc.) Author(s): Bruce Schneier ISBN: 0471128457 Publication Date: 01/01/96 Search this book: Go! Previous Table of Contents Next ----------- 18.7 Secure Hash Algorithm (SHA) NIST, along with the NSA, designed the Secure Hash Algorithm (SHA) for use with the Digital Signature Standard (see Section 20.2) [1154]. (The standard is the Secure Hash Standard (SHS); SHA is the algorithm used in the standard.) According to the Federal Register [539]: A Federal Information Processing Standard (FIPS) for Secure Hash Standard (SHS) is being proposed. This proposed standard specified a Secure Hash Algorithm (SHA) for use with the proposed Digital Signature Standard .... Additionally, for applications not requiring a digital signature, the SHA is to be used whenever a secure hash algorithm is required for Federal applications. And This Standard specifies a Secure Hash Algorithm (SHA), which is necessary to ensure the security of the Digital Signature Algorithm (DSA). When a message of any length < 264 bits is input, the SHA produces a 160-bit output called a message digest. The message digest is then input to the DSA, which computes the signatur...
View Full Document

This note was uploaded on 10/18/2010 for the course MATH CS 301 taught by Professor Aliulger during the Fall '10 term at Koç University.

Ask a homework question - tutors are online