applied cryptography - protocols, algorithms, and source code in c

Previous table of contents next products contact us

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: the key. Thomas Cusick cryptanalyzed 1 round of REDOC II, but he was unable to extend the attack to multiple rounds [400]. Using differential cryptanalysis, Biham and Shamir were able to successfully cryptanalyze 1 round of REDOC II with 2300 chosen-plaintexts [170]. This attack cannot be extended to multiple rounds, but they were able to obtain three mask values after 4 rounds. I know of no other cryptanalysis. Previous Table of Contents Next Products | Contact Us | About Us | Privacy | Ad Info | Home Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc. All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is prohibited. Read EarthWeb's privacy statement. To access the contents, click the chapter and section titles. Applied Cryptography, Second Edition: Protocols, Algorthms, and Source Code in C (cloth) Go! Keyword Brief Full Advanced Search Search Tips (Publisher: John Wiley & Sons, Inc.) Author(s): Bruce Schneier ISBN: 0471128457 Publication Date: 01/01/96 Search this book: Go! Previous Table of Contents Next ----------- REDOC III REDOC III is a streamlined version of REDOC II, also designed by Michael Wood [1615]. It operates on an 80-bit block. The key length is variable and can be as large as 2560 bytes (20, 480 bits). The algorithm consists solely of XORing key bytes with message bytes; there are no permutations or substitutions. (1) Create a key table of 256 10-byte keys, using the secret key. (2) Create two 10-byte mask blocks, M1 and M2. M1 is the XOR of the first 128 10-byte keys; M2 is the XOR of the second 128 10-byte keys. (3) To encrypt a 10-byte block: (a) XOR the first byte of the data block with the first byte of M1. Select a key from the key table computed in step (1). Use the computed XOR as the index into the table. XOR each byte in the data block with the corresponding byte in the chosen key, except for the first data byte. (b) XOR t...
View Full Document

Ask a homework question - tutors are online