applied cryptography - protocols, algorithms, and source code in c

# Pulse standardization circuits passed the pulses

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: he key, is forced to pursue a brute-force search through the random string. The security of this sort of cipher can be expressed by the average number of bits a cryptanalyst must examine before the chances of determining the key improve over pure guessing. Rip van Winkle Cipher James Massey and Ingemar Ingemarsson proposed the Rip van Winkle cipher [1011], so named because the receiver has to receive 2n bits of ciphertext before attempting decryption. The algorithm, illustrated in Figure 17.10, is simple to implement, provably secure, and completely impractical. Simply XOR the plaintext with the keystream, and delay the keystream by 0 to 20 years—the exact delay is part of the key. In Massey’s words: “One can easily guarantee that the enemy cryptanalyst will need thousands of years to break the cipher, if one is willing to wait millions of years to read the plaintext.” Further work on this idea can be found in [1577,755]. Figure 17.10 Rip van Winkle cipher. Diffie’s Randomized Stream Cipher This scheme was first proposed by Whitfield Diffie [1362]. The data are 2n random sequences. The key is k, a random n-bit string. To encrypt a message, Alice uses the kth random string as a one-time pad. She then sends the ciphertext plus the 2n random strings over 2n + 1 different communications channels. Bob knows k, so he can easily choose which one-time pad to decrypt the message with. Eve has no choice but to examine the random sequences one at a time until she finds the correct one-time pad. Any attack must examine an expected number of bits which is in O(2n). Rueppel points out that if you send n random strings instead of 2n, and if the key is used to specify a linear combination of those random strings, the security is the same. Maurer’s Randomized Stream Cipher Ueli Maurer described a scheme based on XORing the plaintext with several large public random-bit sequences [1034,1029,1030]. The key is the set of starting positions within each sequence. This turns out to be provably almost secure, with a calculable probability of being broken based on how much memory the attacker has at his disposal, without regard to the amount of co...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern