{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

applied cryptography - protocols, algorithms, and source code in c

The computational complexity of an algorithm is often

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ish text string) is given by the following formula [712,95]: 2H(K)- nD - 1 Shannon [1432] defined the unicity distance, U, also called the unicity point, as an approximation of the amount of ciphertext such that the sum of the real information (entropy) in the corresponding plaintext plus the entropy of the encryption key equals the number of ciphertext bits used. He then went on to show that ciphertexts longer than this distance are reasonably certain to have only one meaningful decryption. Ciphertexts significantly shorter than this are likely to have multiple, equally valid decryptions and therefore gain security from the opponent’s difficulty in choosing the correct one. For most symmetric cryptosystems, the unicity distance is defined as the entropy of the cryptosystem divided by the redundancy of the language. U = H(K)/D Unicity distance does not make deterministic predictions, but gives probabilistic results. Unicity distance estimates the minimum amount of ciphertext for which it is likely that there is only a single intelligible plaintext decryption when a brute-force attack is attempted. Generally, the longer the unicity distance, the better the cryptosystem. For DES, with a 56-bit key, and an ASCII English message, the unicity distance is about 8.2 ASCII characters or 66 bits. Table 11.1 gives the unicity distances for varying key lengths. The unicity distances for some classical cryptosystems are found in [445]. Unicity distance is not a measure of how much ciphertext is required for cryptanalysis, but how much ciphertext is required for there to be only one reasonable solution for cryptanalysis. A cryptosystem may be computationally infeasible to break even if it is theoretically possible to break it with a small amount of ciphertext. (The largely esoteric theory of relativized cryptography is relevant here [230, 231, 232, 233, 234, 235].) The unicity distance is inversely proportional to the redundancy. As redundancy approaches zero, even a trivial cipher can be unbreakable with a ciphertext-only attack....
View Full Document

{[ snackBarMessage ]}