applied cryptography - protocols, algorithms, and source code in c

They can even be common among a group of users it

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ich a number of different people can sequentially sign a message [1200]. This scheme has been proposed for smart-card implementation [850]. Patents Fiat-Shamir is patented [1427]. Anyone interested in licensing the algorithm should contact Yeda Research and Development, The Weizmann Institute of Science, Rehovot 76100, Israel. 21.2 Guillou-Quisquater Feige-Fiat-Shamir was the first practical identity-based protocol. It minimized computation by increasing the number of iterations and accreditations per iteration. For some implementations, like smart cards, this is less than ideal. Exchanges with the outside world are time-consuming, and the storage required for each accreditation can strain the limited resources of the card. Louis Guillou and Jean-Jacques Quisquater developed a zero-knowledge identification algorithm more suited to applications like these [670,1280]. The exchanges between Peggy and Victor and the parallel accreditations in each exchange are both kept to an absolute minimum: There is only one exchange of one accreditation for each proof. For the same level of security, the computation required by Guillou-Quisquater is greater than by Feige-Fiat-Shamir by a factor of three. And like Feige-Fiat-Shamir, this identification algorithm can be converted to a digital signature algorithm. Guillou-Quisquater Identification Scheme Peggy is a smart card who wants to prove her identity to Victor. Peggy’s identity consists of a set of credentials: a data string consisting of the card’s name, validity period, a bank account number, and whatever else the application warrants. This bit string is called J. (Actually, the credentials can be a longer string and hashed to a J value. This complexity does not modify the protocol in any way.) This is analogous to the public key. Other public information, shared by all “Peggys” who could use this application, is an exponent v and a modulus n, where n is the product of two secret primes. The private key is B, calculated such that JBv a 1 (mod n). Peggy sends Victor her credential...
View Full Document

This note was uploaded on 10/18/2010 for the course MATH CS 301 taught by Professor Aliulger during the Fall '10 term at Koç University.

Ask a homework question - tutors are online