{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

applied cryptography - protocols, algorithms, and source code in c

This in effect uses the one way function as a block

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: S-Box Design The strength of various Feistel networks—and specifically their resistance to differential and linear cryptanalysis—is tied directly to their S-boxes. This has prompted a spate of research on what constitutes a good S-box. An S-box is simply a substitution: a mapping of m-bit inputs to n-bit outputs. Previously I talked about one large lookup table of 64-bit inputs to 64-bit outputs; that would be a 64*64-bit S-box. An S-box with an m-bit input and an n-bit output is called a m*n-bit S-box. S-boxes are generally the only nonlinear step in an algorithm; they are what give a block cipher its security. In general, the bigger they are, the better. DES has eight different 6*4-bit S-boxes. Khufu and Khafre have a single 8*32-bit S-box, LoKI has a 12*8-bit S-box, and both Blowfish and CAST have 8*32-bit S-boxes. In IDEA the modular multiplication step is effectively the S-box; it is a 16*16-bit S-box. The larger this S-box, the harder it is to find useful statistics to attack using either differential or linear cryptanalysis [653,729,1626]. Also, while random S-boxes are usually not optimal to protect against differential and linear attacks, it is easier to find strong S-boxes if the S-boxes are larger. Most random S-boxes are nonlinear, nondegenerate, and have strong resistance to linear cryptanalysis—and the fraction that does not goes down rapidly as the number of input bits decreases [1185,1186,1187]. The size of m is more important than the size of n. Increasing the size of n reduces the effectiveness of differential cryptanalysis, but greatly increases the effectiveness of linear cryptanalysis. In fact, if n d 2m – m, then there is definitely a linear relation of the input and output bits of the S-box. And if n d 2m, then there is a linear relation of only the output bits [164]. Much of this work involves the study of Boolean functions [94,1098,1262,1408]. In order to be secure, the Boolean functions used in S-boxes must satisfy specific conditions. They should not be linear or affine, nor even close to linear or affine [9,1177,1178,1188]. There should be...
View Full Document

{[ snackBarMessage ]}