{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

applied cryptography - protocols, algorithms, and source code in c

# This is the protocol 1 alice and bob each generate a

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ol can allow two infinitely powerful parties to flip a fair coin. Alice and Bob were in trouble until they received a letter from an obscure graduate student in cryptography. The information in the letter was too theoretical to be of any earthly use to anyone, but the envelope the letter came in was extremely handy. The next time Alice and Bob wished to flip a coin, they played a modified version of the original protocol. First, Bob decided on a bit, but instead of announcing it immediately, he wrote it down on a piece of paper and placed the paper in the envelope. Next, Alice announced her bit. Finally, Alice and Bob took Bob’s bit out of the envelope and computed the random bit. This bit was indeed truly random whenever at least one of them played honestly. Alice and Bob had a working protocol, the cryptographer’s dream of social relevance was fulfilled, and they all lived happily ever after. Those envelopes sound a lot like bit-commitment blobs. When Manuel Blum introduced the problem of flipping a fair coin over a modem [194], he solved it using a bit-commitment protocol: (1) Alice commits to a random bit, using any of the bit-commitment schemes listed in Section 4.9. (2) Bob tries to guess the bit. (3) Alice reveals the bit to Bob. Bob wins the flip if he correctly guessed the bit. In general, we need a protocol with these properties: — Alice must flip the coin before Bob guesses. — Alice must not be able to re-flip the coin after hearing Bob’s guess. — Bob must not be able to know how the coin landed before making his guess. There are several ways in which we can do this. Coin Flipping Using One-Way Functions If Alice and Bob can agree on a one-way function, this protocol is simple: (1) Alice chooses a random number, x. She computes y = f(x), where f(x) is the one-way function. (2) Alice sends y to Bob. (3) Bob guesses whether x is even or odd and sends his guess to Alice. (4) If Bob’s guess is correct, the result of the coin flip is heads. If Bob’s...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern