PC_Chapter_08 c - TodayonPHY2048 Examples on Work Spring...

Info iconThis preview shows pages 1–27. Sign up to view the full content.

View Full Document Right Arrow Icon
    Today on PHY2048 Examples on Work Spring and Hooke’s law Inclined plane Kinetic Energy (KE) Work-KE Theorem Examples on Work-KE Theorem Potential Energy Law of Conservation of Energy
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Example
Background image of page 2
    Example W gravity = m g sin θ. d W gravity = mgsin θ dcos θ W gravity = mgsin θ dcos 180 W gravity = -mgsin θ d Here d = x
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Example
Background image of page 4
    Example
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Example
Background image of page 6
    Example
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Kinetic Energy Kinetic Energy is the energy of a  particle due to its motion K  = ½  mv 2 K  is the kinetic energy m  is the mass of the particle v  is the speed of the particle A change in kinetic energy is one  possible result of doing work to transfer  energy into a system
Background image of page 8
    Kinetic Energy, cont Calculating the  work: 2 2 1 1 2 2 f f i i f i x x x x v v f i W F dx ma dx W mv dv W mv mv = = = = -
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Work-Kinetic Energy Theorem The Work-Kinetic Energy Principle states  Σ W  =  K f   –  K i   K In the case in which work is done on a system  and the only change in the system is in its  speed, the work done by the net force equals  the change in kinetic energy of the system. We can also define the kinetic energy K  = ½  mv 2
Background image of page 10
    Work-Kinetic Energy Theorem  – Example
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Work-Kinetic Energy Theorem  – Example
Background image of page 12
    Work-Kinetic Energy Theorem  – Example
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Work-Kinetic Energy Theorem  – Example
Background image of page 14
    Work-Kinetic Energy Theorem  – Example
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Work-Kinetic Energy Theorem  – Example
Background image of page 16
    Work-Kinetic Energy Theorem  – Example
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Work-Kinetic Energy Theorem  – Example
Background image of page 18
    Internal Energy The energy associated  with an object’s  temperature is called its  internal energy E int In this example, the  surface is the system The friction does work  and increases the  internal energy of the  surface
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Examples of Ways to Transfer  Energy a) Work b) Mechanical  Waves c) Heat
Background image of page 20
    Examples of Ways to Transfer  Energy, cont. d) Matter transfer e) Electrical  Transmission f) Electromagnetic  radiation
Background image of page 21

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Conservation of Energy Energy is conserved This means that energy cannot be created  or destroyed If the total amount of energy in a system  changes, it can only be due to the fact that  energy has crossed the boundary of the  system by some method of energy transfer
Background image of page 22
    Conservation of Energy
Background image of page 23

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Chapter 8 Potential Energy
Background image of page 24
    Potential Energy Potential energy  is stored  energy . The energy is stored by doing  work against a force such as gravity or the spring in a clockwork  motor. 
Background image of page 25

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Potential Energy Potential energy  is stored  energy . The energy is stored by doing  work against a force such as gravity or the spring in a clockwork  motor. 
Background image of page 26
Image of page 27
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/21/2010 for the course PHY 2048 taught by Professor Bose during the Spring '08 term at University of Central Florida.

Page1 / 154

PC_Chapter_08 c - TodayonPHY2048 Examples on Work Spring...

This preview shows document pages 1 - 27. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online