Formula_Sheets_for_Exam_1

# Formula_Sheets_for_Exam_1 - Coordinate system Unit Vectors...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Coordinate system Unit Vectors Coordinates Cartesian to Cylindrical F3: iCOS(¢)+ S’Sin(¢) p = x E + y 3 (132-02 3111((1) +§Icos(¢) ¢ = tan _1[L] 2 r 2 x z = z “=‘ _” x=pcos(¢) Cylindrical to Cartesian x pcosm) (fsmwa y = p Sin (‘3) §=ﬁsin(¢)+¢cos(¢) Z _ . 2 = 2 _ f:ﬁschosQ-JrSlsinesin¢+icosﬂ 9 co |[ z J . . = s ——-——-—-— cartesmn to Sphencal 9: icosecos¢+Srcosesincp—isine Vx'” +2— A _ 4 y ¢=—xsin(¢)+§cos(¢) t-w" [:J i=Psm6cos +écos€cos —Asin _ Spherical to Cartesian ¢ A ¢ ? ¢ y — rsm(9)s:n(¢) SI=Fsmﬁsin¢+Bcosﬁsin¢+¢cos¢ z=rcos(e) 2: fcosﬂmésinﬁ (i’E-f)=sin9cosq) i ézcosecosq) :—sm¢ (ﬁ‘§)=‘305(¢) :_Sln(¢) ()2 3:0 (§.f)=sinesin¢ \$7 é =cosesinq) =COS¢ (9'6):Sin(¢) 39056?) (y‘i)=0 (ﬁ-f‘)=cose 2 6) =—sin9 2-\$)=0 (2:920 24;} =0 (2-2)=1 ‘ WWWWWWWWWW‘WM” imminmm. WWWWWWMWWWWW wwwwwmm.Wmmmmmmmmwmmmmmwwmmv—w' WEﬁQFﬂE? eewmwee Cartesian Coordinates (x. y, z) A = Axa, + Ayn, + Aznz 61/ 6V 6V VV = Eax+\$ay+gm v . A = LA: + e: + air a): ﬂy a: a, 2-,, 3x V x A = i a a 6x By 62 Ax A, A, ﬁfe--2422 eke” wanna 8y 62 62 6x ’ 6x 6y ‘ 1 1 2 vii) = 9.! ﬂ 9,}: + ., + (it: ﬂy El:2 (1) differential dis—placement is given by di = alxaI + dya, + £123, (2) differential normal area is given by (3) differential volume is given by dv = dxdydz Cylindrical Coordinates (p, :15, z) A = Apap+lt¢a¢+maz 9V 16V 5V VV = —a +—-«-a +—— 6p " p345 "’ 323‘ la 13A 314 V A = m__(A +__£+_.t pappp) paqb 62 2,, p2,, :11 WA =11 i .6. p 6p ad 62 16, 6A, 6.4 at, l a M = ____ __ __h -mee [p 6:15 .3213" [.32 ap 39+ 6pm“) 51¢ '1. 2 Viv =ia(pav) 126”; all: 133.0 3P pad) 62 WWWWW‘WWW (1) differential displacement is given by cl! = elm-Ip + pddua¢ + dza, (2} differential normal area is given by (15 = pdqbdzap dpdza¢ pd¢dpaz (3) differentiai volume is given by Spherical Coordinates (r. 6, (1)) A 5 Arar+Agﬂg+A¢ﬂ¢ _ av lying + 1 E W _ ar 8' r36 9 rsinﬂaqba" la 1 a _ 1 Milk - : ——» —A a + — V A r23r(rA')+rsinﬂal9(6sm) rsinﬂada a, ma (rsin9)a¢ 1 a a a VXA = «- —— M risinﬂ 6r art! 39 A, Ma (1‘ sin 9) Ad, 6A 1 131% a = .1 [imls‘me———‘1]ar+»~[————(m¢)]as r sm 6 63 6:1: r sin 8 all Br 1 a 6A + “it (rAg) — 3,; 1 9 av 1 a av E 32V 2 _ __ _ _ M _ V V ' r2 er (’2 Br) r2 sm 9 39 (51“ a .36) r2 smz 3 ad): ! (l) the differential disPIacement is (11 = dra, + rdﬂaa + r sinﬂdqbaé (2) the differential normal area is :15 a r2 sinﬂdﬂa‘daar r sinfil dr dqb as 1' dr £163., (3) and the differential volume is dv = ,3 sinB air all) dd; WWW ...
View Full Document

## This note was uploaded on 10/19/2010 for the course ECE 280 taught by Professor Mukkamala/udpa during the Fall '08 term at Michigan State University.

### Page1 / 2

Formula_Sheets_for_Exam_1 - Coordinate system Unit Vectors...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online