{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

9202 - E E 1 fl"'7 5 III“ HE IEE...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: E} E 1% fl "'7': 5% III“ HE IEE m+::¢:fihfl::fi:%miflm::fli%a ISIE_ Elmiflfillfli __IIIIIW 1102 III. __IIIII E III: I ma Iafifimig: II‘J:: fii‘i—IHEIHI 16} :IIII—IEIIIJIIIMSII , I:II+III Efi’ifllfi II. IIIflIIIIIIIIII I IEIIIIIIIIIIIIIIEEWE yII)=(5cm) III (II + %)IIIIIII:I.11IIII 3 cm III fifiifié chs I (A)9 (3)12 (0)16 (13013 (E)4 2. E#35U<?Efffirifl I fifiiiifiiflfitfifitflfiiim 1 GHZ figfiifl I REHELZ’K’E‘W I EHI’EEHHFHEE’UIH -'- HH I flfflgH-fifififlfifiifififi 0-5GHZ fi‘fiEHfi-flfiifiififififi 333%" I HflfififiEWEHHEHfifiEHfififi GHZ HTHEHREHREEH’JHHHR I ' (A);I (3)3/2 ((3)28 (mm (En 3- RTIHEHREHHfiIEIIE¥H IEEHHIJLEIJ 15 Pig/sec MIGHT 600 III? I %Ffilfilfifififlflflifilfi I w 15 HH/3 EU 60 HH/SEI: $1? WE’QHHFHH I (A)24U (3)200 ((3)180 (1339120 (E)90 4. IJIWHET£HEEI%HH I iflifi‘flfifiififlfiifififlflE‘YEI’EIJIHRHEH’DEHH%EEJJ I Hfi%iIkfifl%thifl I HE HERE? (Mflfi‘é (WE'RE (C)$% (WHEEEEIWR‘IE‘ERHEIE {E)$D"EHBEIHIH$WW%EHH(IEE% JEW IfiJ) ' 5. EIIIHIIIEIIIILHI I fififififififififitbkfitfif‘fii h I IIIIInIéIa—IIEIIII:IIIIIIIIII , I: I EflfiIWfiflWEflfififi IRE (AMI/7 (BN5 (6)1 (DIJCITI (Eh/172 6- Efifii 9' "I 2'5? El 39' Wflfi'fifififlmfilfimgfii (2,0,0) I (0,2,0) )5? (0102) II flfifiififlfiifififimfl” %%:IJI%%§F ? (So if permittivity canstant I ) qujoo (B) J2 250 (C) qwmo (D) iii—40.5625 (E) «£0,433 49:3.) 4:5fl 433$ 4mg 4:3fl 7- $Ififi1mffl‘fiififlififiifi‘ifl2fififififi: 9" IflfiifififfifififlTE’flflfiffifl 1 IiI=1III2 (pfifiififfiffi I k fiJH’JflI II fiiéflfiRIflIH‘JEEIHHDI Ififii‘fifififlfib 0 5m fififi%i%fi<dw ? (A) 5.3: (B) i (C) (D) 1L3: (E) 1 .4 Miafl 2 4::3fl 4 49:13:13 4mg 16 41mg 33 3. Zififiufififibfi‘i 4C 32 BC HflififiI Hu%lfilfi§’fi§fifl¥fl I Hfiififi'fiflfiflfifilfifififlfifififififi 2m WEE I @flifiéfififiwfigfl? 9 (A) J my34'@)1J 43:: Align 45:3,} 4mg 4mg a+:esanaaaraaaaanaaaaaaa $345 $.1mi Z WHEEL fliflfi 1102 it 11 Egg 2 E grass , a 213 aasraaa—m; : strata 1 a = saw—sagas 0.25 a: areas-ran 9- Hialfififiidiifiiifi'iJ ' Veg 15V H’Jfifififliflfl ' MI] Hz 5} 53% 59 352109 with ’ L fi 0.2H Hilfiiflfiii ° Emilia S FifiJ: ET} ’ fiflfilfifldfiifilflfim ° diiiladi’ié‘fi 5' Wii’fifiilifiilaefi ' fiifl SQ fiflfllfilfimfifi‘ ? (A) 0 (3)1251 (C) 2.4. (D) 3A (B) 4A 10- flaw-E. . 11% S EfitfigfifiZifi * ssraaraaraaaars * ifiifl 109 Elflfi’flfiifiikd)? (A)0 (Bola (C) 2A (D) 3A (E) 4A Eifi'flfig 11. Draw the lcwis structure fcr hydrcgen cyanide, HCN. ch many unshared electrcn pairs are present? (A) 1 (B) 2 (C) 3 (D) 4 (E) nnne cf the abcve. 12. The shape cf water mclecule is (A) angular (B) planar triangular (C) linear (D) tetrahedral (E) ncne cf the abcve. 13. The hybrid crbitals used by the beryllium atnm when the BeBrg mclecule is farmed are (A) sp (B) 512.1 (C) SP3 (n) apt (E) ncne cfthe abcve. 14. The number cf subshells in the n: 4 levels cf any atnrn is (A) 2 (B) 3 (C) 4 (D) 5 (E) ncne cf the abcve. 15. The VSEP-R mcdel predicts the shape cf carbcn tetraflucride mclecule, CF4, tc be (A) tetrahedral (B) planar triangular (C) linear (D) triangular pyramidal (E) ncne cf the abcve. 16. Far which cf the fnllcwing transitinns dces the emitted light have the lcngest wavelength? (A) n=4tcn33 (B)n:4tcn=2(C)n=4tnn= l (D)a=3tcn=2 (E) n=2tnn=l 17. Which electrcn ccnfiguraticn is ccrrect‘? (A) Ga [Kr13d1‘3'4314p‘ (3)1140 [madam (C) Ca [Ar] 431mm (D) Br * [Kasai-#417” (E) Bi [Kassisf‘lsd‘flspi l 3. 339 413 Estimate the heat cf ccmbusticn cf cne mcle cf acetylene. CgH2(g) + 5:"? 02(3) rt“ 2 C02 (a) + Hams) (A) 1228 k] (B) “1223 lei (C) —44':’ k] (D) 447 kJ (E) 365 1d 19. Fur which ccmpcund is rescnance required In describe the structure adequately? (A) LigS (13) NH; (C) N02" (D) Cqu' (E) ncne cf the abnve n+3aeaaew$iaeawinwwawaew we arena in: was 1102 a 11 _aez 3 a were =- u 23 asaaaaca-ss : taw~aate1e . seamaaasa 0.25 a = asaaa‘aw 20. Which statement is FALSE? (A) C; is paramagnetie (B) C: is diamagnetie (C) The earhen-earben bend in CE— is stronger than the ene in CH3CH3 (D) The earbenuearbnn bend in C22" is shnrter than the ene in CH3CH3 (E) twn {if these lfififlg 21. Censider the wave equatien again = as”, u(0,t) = n(L,r) = 0, n(.r,0) =: f(x), at, (x, 0) = g(x) fer 0 a x a L, 0 a .9. By the niethnd nf separatien ef variables, we have “(an t) = X(.x)T(r) and i: T =ennstant =—-a"2, a"? 0. If n =1,2,3..., a'is equal tn X GET Zara arr ma (2:: —1)ar (2n —1)a' A —— B _.__.. C ~—— D ——-- E W ( ) L ( ) 2L ( ) L ( ) 2L () L 22. Fellnwing the abeve prehlem, um!) is the superpesitien ef the pessible X(x) Tfl) and has the farm n(x,t)=ZA,,Xfl(at)Tn(r).Then X,(a-) is equal tn 11:1 . 2m: mt . arr (2n—1)rr . (Zn—Dar A sin mus—x B ens — C s -——r~ D ens —— E in m () L () 2LI()IHLX() ZLKUS L x 23. Which ef the fellowng samples funetinns is NOT differentiable? sin a (A) eesa (a);- (C) e (D) |z|2 (a) —:~(z¢0) 24. On the eernplex a plane, let C be a elnseti eirele eent ered at a w 0 with a radius ef 2 and eriented . 1 . eeuntereleekw1se, then {—1113 is equal tn ' E (A) 0 (B) m (C) 2m? (D) —ari (E) "Ext 25. On the enmplex a plane, let C be a elesed eirele centered at a = 0 with a radius ef 2 and eriented . z enuntereleekwme, then ("I mum—dz is ualtn ‘agfi2:+1 eq . (me (an: (cum (D)--a:i (E)—2ar‘ 26. A,B,C EJEIUE r LA" EEJE * A r B EWE 1 AEB E; eress preduet ’ $§Ufifififig$¥jfi§ ? (MA wwwwawaaw: (mmmw:waasanm1 (QLAAflAMI aahmaaaaawweenaezwe sapptnap+a —-‘_—-m—-—.—I—-—I—Im_-—l—u-Hll—I—I—I—I—l A+zAAAAAdAraaAAAnaAAAAea (APE flififi 21E (IE: ii‘ififi_ .1._102..._.fi: 11 3% fi-fltfi . L1 2’3 ififififlfiififirfii '- fi‘fimfififi 1 fl) * fififiwifififlifl 0-25 fi‘ * 5E5§T§Jrfi .. 1 a 4 A2 n a= 1 C= 5 (27-29) a 0 6 27. A - (BAG): ‘5’ (A) 0 (B) 3 (C) 4 (D) 5 (E) 3 2aAficzmm= 4 5 (A) 00 (a) cars"! 7:? (C) sin"1 3? (D) ens—l 7'23— 29. A AA B asceazaaaas C Zyc‘fiate‘t (A) 0° (3) ens—l 3% (e) cans—13% (D) Sin—1 fl 2s: — 2x __ 2x 2x (A) 2y (B) 2y (C) - 2y (D) - 2y 1 1 1 1 BEFHE¥E 31. The circuit is in dc steady state at t = 0—, find i({)n) (A) 0 (3)14ch (C) 4fR (D) (MC (E) 4IR+C 32. Fellnw prnbienr 31, the circuit is in dc steady state at t = 0-, find i([}+) (A) c (a) Arne (C) Ara (D) 4A: (a) cam 33. Find the vnltage between the 4D resistance (A) 27 g; —24.5” (B) 13 AH24.5° (C) 9 4 —24.5” (D) 3 5-24.15” (E) U 34. Find 1% (A), the scarce frequency is 60Ha. (A) D (B) 3 443.? (C) 15 4142.5” (D) 27 4—615" (E) 36443.5“ 35. Fellnw prnblern 34, find InH(A) (A) 0 (B) 3 4—835" (C) 15 4—725“ (D) 27 4—615” (E) 36.1435" 4 E W fit+i15§5li§tii vii—1 “' fil'fifigfififiiififiifiiflfifigéfi $31191 Eifijlfi‘ 11%:- tillifin __110._.2 _:J.i: 11 j% 5 E 942396 . L1 23 fdflfiflfiBfifih : Ehirrffitfi 1 id ' gi‘a‘mfifififlifl 0.25 53* . 5E§$iitfi “ 36. Censider the three—stage RC-ceupled J FET amplifier shewn in Fig. 36-39. Find the Q—peint drain current (A) 1983 11A (B) 3.33 mA (C) 9.97 uA (D) 2 mA (E) 1 mA fer transister J1. +10).l ‘f _'- w ufl' 'l'ltree-stegc ItC-ceeplerl JFET amplifier. Fig. 3669 3?. Find the Q-peint drain current fer transister J2 fer the circuit shewn in Fig. 36-39. (A)1mA (3)333 mA (C) 9.97 pa (D)2mA (E) 0.77 mA 38. Find the Q-peint drain current fer transister J3 fer the circuit shewn in Fig. 36—39. (A) 0.5 mA (B) 6.67 mA (C) 1.54 mA (D) 3 mA (E) 1 mA 39. Find the midband values fer the veltage gain ef the amplifier shewn in Fig. 36-39. (A) —6 (B) —5.93 (C) 32.6 (D) 0.91 (E) 25.1 40. Three amplifiers with the fellewing characteristics are cascaded in the erder ef 2, 3, 1. Amplifier 1: A...“ = 1, R” = 2 k5], Rm = 1 [(52 Amplifier 2: Am; = 2, Eu == 4 kill, R0: = 2 k9 Amplifier 3: Am; = 3, Rig, = 6 k9, R03 = 3 kfl The cascaded amplifier is then cennected to a everall cascaded cennectien. (A) 6 (B) 0.9 (C) 1 (D) 2 (E) 1.3 91.03% 41. Indicate the wreng statement fer the preperties ef activity ceefficient (v) : (A) a cerrelatien facter between TH indicating ideal and nen-ideal selutien hehavier, (B) v=1 indicating an ideal selutien, (C) _ “repulsien” between twe cempenents ef the mixtures, (D) the Raeult’s law is valid fer ideal selutien (1:1) enlv, (E) veil having a high tendency te cempeund ferrnatien with an endethe 42. Indicate the wreng statement fer the preperties ef regular selutiens: (A) Tel, (13) as”=c, (s) German”. 43. What is the entrepy ef carben mene-eside (CO) at 09K? (A) R 111(2), (B) 0, (C) R 01(3), (D) 2R 1:10), (E) SE 111(3). lead ef 1 k9. Find the epen-circuit veltage gain ef the (a) ashlar). (e) set—“wt, a+:eeaewweiaeaeihw4heseafl' flamflhfiflwthfifi 6- e ears . u 23 assesses: : eager-s1 a , «sewers 0.25 i} . seesaw 44. Indicate the wrcng statement fer the reactien H30(S) -) H200) in an ice-water bath at OGC: (A) ASH}, (B) AHfisO, (C) AEh-O, (D) AG-at), (E) ave). 45. Indicate the wrung statement fer the stability criteria cf thermcdynamic systems: (A) (13:0, (3) (113:0, (C) c. is, (D) (dermis, 1.20, (a) a (ccet‘ficient cf cempressibilityfifl. 46. Per vaper pressure: In P= wAfT + B In T + C. The value cf fiCp is equivalent te (M (B) RB (C) B (D) R (E) A+BT 47. Fer eacthennically ferming selutien (A) yi= U (13) vi <5. 1 (C) yi > 1 (D) 7): l (E)ncne cf ahcve 43. Evaluate the entrcpy cf mixing by mixing 1 male cf A atcms at P = 1 atm with l mules cf B atem at P v 2 atm. Assume that the mixing is carried cut at ccnstant tetal vclume. (A) ASL‘O (B) AS=len2f9 (C) rSS=3R1n2 (D) AS=~RIn2f3 (E) AS=--Rln lf3 49. Find the temperature at which the precess is adiabatic fer the cendensed phase reactien A + B —+ C + D Where {AG = a + bT 1n T + c T cah’mule (A)T=a (B)T=ar’h (C)T=afb+C (D)T=hKa—C (E)T=h/a+C 50. Fer a regular seluticn (A) AS” 7;! 0 (B) AS“ = 0 (C) ASKS <1 0 (D) AH‘“ #5 G”5 (13)::le = RT In a Wflfifl 51. If twe grains cf ene phase meeting a grain cf the ether phase at a ccmmen intersecticn, and the surface tensicns in the bcundaries are in static equilibrium, which cf the fellcwing equaticns is ecrrect? (A) 7 u = 2 T12 ccs( 9 (2); (B) 7 12: 2 1r 11 ccs( :9 (2); (C) gr 1] : 2 TI: sin( 9 (2); (D) r [g = 2 y 1] sin( 6 (2); (E) nene cf abeve. 52. Which cf the fellcwing mechanism related. tn the HallnPatch equaticn? (A) The wcrking hardening rate decreases due tc the dynamic recevery; (B) The higher the flew stress, the greater the density cf dislecaticn inside the crystal; (C) The smaller the grain size, the mere dislecatiens pile up against the grain hcundary; (D) The smaller the grain size, the less dislecatiens pile up against the grain beundary; (E) Needs mere energy fer creating kinks and je gs as dislecatiens intersecting tc each ether. 53. Which cf the fellcwing statement has fl interactien between the sclute atcm and the dislecaticn? (A) Suhstituticnal atcms in b.c.c. material and negative edge dislecatien; (B) Interstitial atems in fee. material and pcsitive edge dislecatien; (C) Interstitial stems in fee. material with left—hand screw dislecatien; (D) Interstitial atcms in h.c.c. material with right—hand screw dislecaticn; (E) nene cf abeve. 54. The sclubility cf Carhcn in f.c.c. Ircn is much larger than that in h.c.c. Ircn. Which cf the fellewing statement is related? (A) Packing facter; (B) Carbun atcms is smaller than Ircn atem; (C) Slip system in f.c.c. is well defined; (D) Slip lines in b.c.c. is wavy; (E) Shape cf heles. mm-‘mIm-mfim Ll stiff??? Jfil‘él “#4311132“? filfitffl Tiff silfidiigi-fi tillii filmisfliflclfl i—lifi— 1102 #3 11__E% WWW . L1 ZB iiififiliflijWWi-d; 1 With-WW1 ii Wits—*iéfilillifl 0.25 fr} . WWWE‘H} ° 55. Which cf the felluwing statements is m? (A) Dislecatien never ends inside a crystal because it is the beundary between sheared and tin-sheared area; (B) An edge dislecatien is a twe-dimensienal defect, because it has an extra half-plane aterns (er vacancies); (C) The Burgers veeter cf every puint aleng an dislccatien is same, unless seme anether dislccatien cennecting with it; (D) The tilt beundary dees net pesses a lengurange stress field; (E) There is a driving fcrce that attracts the edge dislecatiens te a tilt beundary. 55 ._f.}1;l~FIEIEllfiijtiflaal‘fimumflattlccflsit”! (AJF—filfifi?lil§l filfiflmlfiflfiu3_(pes1t1ve deviatien) (B)WWW¥E§WWEEWE¥WWKW3 (DEW!fifififiWfififihefl-rauge Dfdvfiflg) ’ lflfififlifilfiifi‘ifiiiilfi (WWWH "‘ filigfil'fiiiflii ' lflfilflllfifiiEtlfiflg-Tflflgfllfiliiiflfi (ENE/U: es 57 i333 JlZ-F 1’ [ bcc filial ialfiiiii fcc is?LFl Iii-33.37% bee ifitlj . liliittfiifi: foe aeaaewifsmms’a Elisha? HEM 3. h, v. 111 Hair? HUE‘EJW Zfiflidfilfifia (A)a:=~b::-c::~d (Ems-seem (Cheer-baa (D)b:~a:=~d:sc (E) dscnasvb 53 fiwfiflfififiifififififilfilfifiiflfifiliElVl-‘lWfififitififilifififi ’ WiHEF’W’EEfiifififi * Eiliiitlfilifi ’ WWW fiilililfiilfi ’ fif‘si‘chifiltimfitflfi (A)%l3%llil .a—Z'J32lfr} (B)WWEWEZIHKWEW%J3ZJRWE (C) fiWE‘fiWlfilflfiflfitifi (WWW? _ Wifififiififl'r—Efififiifi (EllfiWfifllfilfilflEW’E-TWEWZWWW 59 ' lliilWfiiflifiiElfli§.il#ifili§isi'e(defldfite)fll$ifilfi =' Wigtijfiiéfifiifi? ’ Elfiiiifiiififilfillflfififilfitififi Illifl; .ifiiWi Ellis 51%}: (A)|7E|{fi3lfi“(ccring) (B)Ejjffifi$fi(gravity-induced segregatien) (CfififififiafiflEfifinterdendritic puresity} (D)§fii}fi?flfi(inverse segregaticn) (EjLfingigibjli fifl-Efifiifidflfiflilfilifil ’ E$m(fluvlfifltivfl)fl$hslktlflifilfiseTlfifi[email protected]’Jilflfi lfiliitlitlfllfi WW flifli‘fifii’l‘fi: ‘-' EEEJEIiL—W: (MWWWWWWWWTEJ (mfiiifigifiiflflfii (Cibififlfiiflvfllbl‘iflmgfifillfifii (DJWWWEQ il’fliifili'iikfli (Ewes. “3F ifit‘CWfl 61. Which cf the fellcwing system shews energy levels with equal spacing (A) the vibratien cf a diatemic melecule. (B) the rutatien ef a diaternic melecule. (C) the translaticn cf a diatemie melecule. (D) the electren urbital in a diaternic nielecule. (E) nene cf the abeve systems. 62. Abeut the tunnel effect, (A) the particle wave in the petential barrier ferms a standing wave. (B) it eccurs when the particle’s energy is lewer than the pctential barrier height. (C) the tunnel prebability has nething te tin with the thickness cf the petential barrier. n+:eEEMwweIeeswmnwwmwssu as e. .Ifiitwfi‘ we: s-samgmsmimss :1 a has : u 23 smashes: : assess 1 5} ~ sessile 0.25 as . sets» (D) Q; = 0 at the edge ef the petential barrier. x 62w ax: (E) = 0 at the edge ef the petential barrier. 63. An electren wave functien in the hydre gen atem, when expressed in spherical ceerdinates, is (A) Media's) = R(t)®(9)‘1’(¢)- (3) s10: 9:535) = RU“) + 9(9) + (13(59)- (C) tat/(ed: t5] = R(F)®(9) + RCr)‘I’(¢) + @(WIW) . (D) W". 6'. €35) =1 R(t)®(9)‘13(¢) l- (E) 91.039: {9) = (R(F)@(5’) + R(r)¢(¢) + ('*T’(t5’)‘~13’(t$))t l R(P)®(9)¢(¢) |- 64. The general cenditien necessary fer an atem in an excited state te radiate is that (A) [Ms/who. (a) (prefixed. (C) [swiqu (e) lewlidxefl. e)Jume=s 65. Zeeman effect is the experimental verificatien ef (A) the principal quantum number. (13) the erbital quantum number. (C) the magnetic quantum number. (D) the selectien rule ef atemic radiatien. (E) nene ef the abeve. 66. Due te the spinnerbit ceupling, hew many spectral lines yen can ebserve fer the 2p —> Is transitien. (A) ene (B) twe (C) three (D) feur (E) five 67. Which ene is NOT the pessible values ef the tetal angular—mementum quantum number J under LS ceupling ef twe atemic electrens whese erbital quantum number are 31:] and 32:2. (A) 0 (B) 2 (C) 3 (D) 4 (E) 5 63 An stem with a missing inner electren can lese excitatien energy and eject an euter-shell electren. This phenemenen is called as (A) Pheteemissien effect (B)Cempten effect (C) Auger effect (D) Pair preductien (E) Blackbedy radiatien ' 69. In CO melecule the J=O m)» J=1 abserptien line ef retatienal spectra eccurs at a frequency ef 1.15MB“ Hz. What is the bend length ef the CO melecule? (A) 0.11 nm (E) 0.22 me (C) $.33 nm (D) {1.44 nm (E) 0.55 nm 70. When yeu want te tell the characteristics ef carben bending (i.e. spa er sp2 bending) in melecules, which spectra can give yen this infermatien? (A) retatien spectra (13) vibratien spectra (C) electrenic spectra (D) all ef the abeve three spectra (5) nene ef the aheve three spectra. fifit’cfi 71. Alkenes (A) are relatively nenpelar cempeunds. (B) have lewer beiling peints than alcehels ef similar melecular weight. (C) are reasenably seluble in water. (D) beth A and B. (E) nene ef the abeve. u+:acauuusiaeaaiuaaaassa as sarcasm: war__u_qz__a_n__aa 9 a were . 1a 213 assuasasr : space 1 a , assassin 0,25 s . scar-tan 72. Predict the twc mcst likely mechanisms which cccur when 2-icdchexane is heated in ethancl. (A) $142 and Sal (B) El and E2 (C) 81.42 and E2 (D) E1 and $141 (E) ncne cf the stance. 73. Which cf the statements belcw ccrrectly describes an achiral mclecule? (A) The mclecule has a ncnsuperimpcsable mirrcr image. (B) The mclecule exhibits cptical activity when it interacts with plane-pclarized light. (C) The mclecule has an enanticmer. (D) The mclecule might be a mesc fcrm. (E) ncne cf the abcve. 74. The relaticnship between ketcnes and their ccrrespcnding encls is cne cf: (A) tautcmers. (B) stereciscmers. (C) enanticmers. (D) diasterecmers. (E) ncne cf the abcve. T5. The rate cf a rcacticn typically increases as the temperature increases because: (A) the A term in the Arrhenius equaticn increases. (B) the fracticn cf mclecules with kinetic energy greater than Ea increases. (C) the activaticn energy decreases. (D) the activaticn energy increases. (E) ncne cf the abcveJ. 76. Which cf the fcllcwing methcd is the best synthesis cf 2,2—dibrcmcprcpane? (A) CflgCHfiCHZ + BrngCla (B) CH30H=CH2 + Brgt’light (C) CI-13CH=CH2 + Brgfpercxide (D) CHJCECH + 2 HBr (E) CH3CECH + 2 I-[Br fpercxide 77. Which is the ccrrect crder cf decreasing acidity in the fcllcwing ccmpcunds? H20 (A) CH3CH3 (B) NHg (C) CH2=CH3 (D) HCECH (E) (A)A}E3*C:=*D3s-B (B)D3A}E}C}B (C)E}A:=-C:=*B}D (D)C}A}EED}B (E)B}D:~E}A?C 78. What is the relaticnship between the structures shcwn belcw? Cl CI H+Br BF+CH3 CH3 H (A) Enanticmers (B) Diasterecmers (C) Ccnfiguraticnal iscmers (D) Ccnfcrmaticual iscniers (E) Identical ccmpcunds 79. Which cf the fcllcwing is net an electrcphile? (A) H'*‘ (B) NH3 (e) as; (n) Br; (s) Fe3+ 30. What is the strcngest intermclecular fcrce present in liquid ethancl‘? (A) induced dipcle u— induced dipcle (B) dipcle — induced dipcle (C) hydrcgen bcnding — hydrcgen bending (D) hydrc gen bcnding — dipcle (E) hydrc gen bcnding - induced dipcle mem—H aaaeauaaamaeaaaraarasstresses $3113 filmifliEUELflWJfa 11 _Ei%_ml.fimwfi rears * L1 213 fififlfillfi§$iit i fifimfilfil 1 fl} * Efifimifififlifi 0.25 {6‘ * 5E5§W§tfi ° Ififig Per the beam and leading shewn, 81. the shear feree at peint C is (A) 3 kN , (B) 4 kN (C) 5 kN (D) 6 IN (E) 7 kN 32. the mending mement at peint C is (A) 12 kN-m (B) 14 kN-m (C) 16 kN—m ' (D) 18 kN-m (E) 20 kN—m 83. the maximum shear in the beam is (A) 6 kN (B) 8 kN (C) 10 kN (D) 12 kN (E) 14 RN 34. the maximum bending mement in the beam is (A) 12 kN-m (B) 14 kN-m (C) 16 kN—m (D) 13 kN-m (E) 20 anm Fer the system shewn in figures, the eeefiieient ef statie frietien is as = 0.4 between all surfaees ef eentaet 35. the smallest feree P required te start the bleak meving is (A) 12 kN (a) 141m (C)16kN (D) 13 kN (s) 20 kN 86. the smallest feree P required te start the bleak mering is (A) 14 kN (B) 16 kN (C) 18 kN (D) 20 RN (E) 22 kN 8?. the smallest feree P required te start the bleek meving is (A) 36 kN (B) 38 kN (C) 40 kN (D) 42 kN (E) 44 kN A eantilever beam supperting a. uniferm lead ef intensity q aeting ever the right-hand half ef the beam with length ef L and eenstant flexural rigidity E1. (38—39) 33. What is the angle ef retatien BB at free end B: (A) SqL3f(43EI), (a) aqL3r(43E1), (C) TqL3f(43EI), (D) SqL3f(43EI), (E) 9qL3!(43EI). jL-l‘: gfifififllfifiilifi$¥éfialfiflfliit¢TEéF”%’gfii " ‘ 1102 at“ 5%” asses L1 2B reassess t; é?! EEii% 1 fii‘ sisal—esters 025 :} :fié‘riWfitfr} 89. What is the deflecticn 513 at free end B (9925 thre 34131), (a) 32qL4r(3 34131), (C) sethas 34131), (n) 41qL4a334E1), (E) ssqfiassssr) 90. In a cylindrical pressure vessel with the wall thickness cf t and inner radius cf 1', the beep stress and the axial stress are dencted as :31 and 62, respectively. If the internal pressure cf the vessel is p. which relaticnship listed in the fcllcwing is ccrrect. (A) c1 2 an’t, c2 = 'prfl(2t), (B) tn : pr!(2t), 52 : prft, (C) (1'1 = 3pm, c“; = prf(3t), (D) {:1 = 3pm, (I: : pn'(2t), (E) m = pra’t, c3 = pr!(2t). ...
View Full Document

{[ snackBarMessage ]}