9203 - IE ‘fi. fi: $1 A}? E (A

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: IE ‘fi. fi: $1 A}? E (A in~I~*:%fi=UEW4fl%flfl%fifififlcflflflfiifliwfifl $316 @31ng E BEE. WA? .1_1_0__3_.. 11 E% 1 E = L1 213 : %¥=J--~%E(% 1 56‘ = fififih-Jfififium 0.25 é} A fiei‘é‘ififi} a fiifiq’fifi 1. SAP am 3uF WAWAMAAAWHA ZHF FwfifiifiFHHfifi I mtfifiamwaamamgflm r EIIJJtt’é—‘i; ? (fifififigfilflfiflfifiimfififififi a ) (Anew: (3)3.9pF ((32.5% (D) 1.6uF (E) 0.97% a 2- Elglfififiifl’iffiflgw ' 141% 12V ’ RI ‘32 in R3 fiflm 252 ‘ 45-2))?" 49— Wfififl ‘ C [HF ° W S Eat—Fifi ’ flfi'fiflfififimfim * ° film??? 3 Wifififlfiflfiffifl ’ Ra Wflififififilfifizg? ? (AJU (3)2V (ID4VF GIH?J (E)3V 3. fififififi ’ 5*??? S WHJLEiglFflf/LUZffi ' ’ R 1 mflfiéfigfifl%%w ? (A) 0 (B) 2V (C) 4v (D) 6V (B) BY 4- Slfiffiiifi: flyfifi‘fififigfi'fifiifl? 21“: ‘ fifijflfififilfil ’“fificlfiafiflfifix 2cm°gfimfiffifi§§jlfi5§¢ ? (Jug panneability constant c- ) (mflwcm (,1ij (3)2}: flmxcm w; [jj (C)4KEj—Nfcm maid) (0)3 x Eiwcm rm I jg 4H 4H _ 4H 4H (E)16>:—‘uiNfcm [BEN] 45’!“ 5- %#1E§%fifilfli$ffifia 300m H’flfilfiflfifififl‘ W 913%: * 2A = Elfifi’fllfihbflfififlfi I 2% EJFEFEE ( 030306111) fil’fijfiffiflfifid) ‘? (A) 1.44mT (3)1.20pg T (C) 0.72% T (D) U.432,£1()T (E) 0.36% T 6. Efllfifflfififizfi 600nm H’flfi'fiifiMfiEfififi; 1.5 H’afiiéi I flMfiE‘LFHfiWEEfi$fifiUfl%w ? (A) 400nm A 5.0x10‘4Hz (3)40011111 17.5x10l4Hz (060011111 1 3.3}:1014Hz (3)9001-1111 A 5.0x10'4Hz (E) 90011111 I 7.5:»:10HH3 7. flfiflflflwmfififififlfiflfifi 50mm * (fififimfifimfiflfififi 30cm Jfi A fifififiJflZifiZflfiéflmfil ? (A) SFEHJU‘CEZJHQ (Enffififilfifimflflféz (C) IPAWNAEZIEEQ (D)0*2f%1flfifli21flfgi (E) 0.1 ffifflk$2fléfi 8. Wfi Sflmw "éfi‘fia‘lfl’flfififia 400nm I ut’fi'flifififiififififififitij%fi¥flféfifi ? ififllfifififififl (Plank cnflstant) % 6.6}:10'34 Ms D . (A) 10” (B) 10” ((2)1015 (D) 10” (E)10” a fifi?fi%~fi%fi%%fifl%fififiw= (Afgfifififéfi (B)%¥flfififlfifi (may (DMAWAAAMRD (BLALEfiF- 10. RTIAAJAA 10mm W3fi¥fi€lfiffilfiilfifii I 3%B’Ufilfifllifi’ifiifl‘fifififfi w fitfihlfiflfifijfi‘éflfififl% ii)? (Am (3)10'31J (C)10‘23J(D) 10'24J(E)10'2“J _ murmm—I—I—‘mmw n+:::eelannessrersssrssen $3113 - ‘II ldtlfimdlfllmfi 11_E% 2 E litiilfifl‘tl * L1 23 $0$Elfifi$fi = 1 til * %%*'r*slfil¥ll[l 0.25 56* * 2355$§+fi r fiifilfig 11. Per the reactien 2A + B —s C the fellewing mechanism is prepesed: fast equilibrium If step Zfiis the rate—determining step, the rate ef fermatien ef C sheuld equal (A) as] (B) kiAltiel (c) kisrislt (D) k[A][Bl (E) kisser 12. Twe rate censtants k; and It; have exactly the same value at 300.0 K. The aetivatien energy fer k; is 50.0 kamel and fer k3 is 100.0 kJi’mel. What is the ratie ef the fi‘equeney faeters A1 te A; fer the twe rate ssiisisms? (An .02 (13) case (C) 5.05 s is3 (e) 1.97 s 10"9 (s) nene ef abeve 13. Which statement regarding water is TRUE? (A) Energy must be given eff te break dewn the crystal lattice ef ice te a liquid. (B) Hydregen bends are strenger than cevalent bends. (C) Liquid water is less dense than selid water. (D) Only,r cevalent bends are breken when ice melts. (E) nene ef abeve 14. Which statement is FALSE? (A) The binding ferces in a meleeular selid include Lenden dispersien ferces. (B) Meleeular selids have high melting peints. ' (C) lenic selids are insulaters. (D) Ienic selids have high melting peints. (E) Nene ef abeve 15. Te calculate the freezing peint ef an ideal dilute selutieu ef a single , nendisseciating selute in a selvent, the minimum infermatien is (A) the melalitbr (cf the selute). (B) the melality (ef the selute) and the freezing peint depressien censtant ef the selvent. (C) the quantities in (B) and the freezing peint ef pure selvent. (D) the quantities in (C) and the melecular weight ef the selute. (E) the quantities in (C) and the weight ef the sevent. 16. Cheese the species with the greatest bend strength. (A) F; (13) C12 (C) Br; (D) I; (E) all the same 17. The cemplex iens ef Zn2 ' are all celerless. Which is the meet likely explanatien? (A) Zn2+ is net a transitien metal ien. ' (13) Zn2 " is paramagnetic. (C) Zn2+ exhibits e’ erbital splittings in its cemplelies that abserb all wavelengths in the visible regien. (D) Since zii2+ is a all” lbs, it dees Ilflt abserb visible light even theugh a" erbital splitting sis cerrect fer abserbing visible wavelengths. (E) nene ef abeve. hI—me—fim— n+:eeeaeae:eeseenaneeeee (as sire * (see 1103 3 a see - 1a 21-) meanness: : eaves-1a : arse—assess 0.25 e =~ see erec- 18. The halfnlife ef the (Is-131 nuelide is 30 years. Afier 90 years, sheet 6 g remains. The eriginal mass ef the Cs-131 sample is eiesest te (A) 80 g (B) T0 3 (C) 60 g (D) 50 g (E) 40 g 19. Substances with the same meleeular fermula but with different structures are (A) polymers. (B) esters. (C) isemers. (D) iseteples. (E) dimers. 20. Nylen is a (A) eepelymer. (B) Hemepelymer. (C) dimer. (D) twe ef these. (E) nene ef these. Ifififi A—11 2123 —1 0) (-) 21. A Z eigenvalue (Am (3)1 (C) 5%?— (D) "1:5 (E) "1:5 22. Eflfiz eigenveeter 1 0 —-1 —1 1 (A) [U] (B) [I] (c) if; (D) (is (E) 1—); 2 2 T 23. %#(fi eigenveeter is}; 1 m1 1 1 (J (A) [0] (B) [I] (c) -1443 (D) :11); (E) "(as 2 2 2 ya2 —1 24. F(x,y,z)= rag + ei" = petential funetien E 2xya' + 1 (A) xzyzz—x+ei'+z (B) xyzzwx+e'i’-z (C) xEyz—x+ei+z (D) xzya—x+e""3’+z (E) xyzz—Hei'i-z 25. 1 )7 ' F=? (A) xlyzzhxrremz (B) xyzg—nfl’y-a (C) ey+2ya (D) e”+2)(a (E) ez+2xy 26ijififl x = rsinfl sass!) , y = rsinfl sins), = reesEl ( i drz=hfidfi+hfdez+hfdal ~ same..th r r2 1 F— r 1 (A) -1 (B) 1 (C) F“ (D) 1 (E) ('1 :- sin 5' sin 6.? r sin (.9 r sin 6' sin 6' . Eu 2 62a) , _ . . _ Eligmajjfifl E 2 er 5;:— Iflgxé rr 1 titafl I u([},t)—u(rr,t)=[} . u(s,0):2 ( Dist: rr . El] t—mfiflsi I u(x,t)— ? 2 E 2 E (A) Esin he ‘2“ t (B) Esir) are ‘3 t (C) Esin he 23 t (D) E(erasare ‘23 t as a: as a: 2 (E) Esinxe 2“ t ,._._H__.____———_—_a__n_n_h_a‘—n_n_u_n_L-_n.unn-u_1mqan—u h+:%$fiflflfi%lfifififiimm%fi%fi%fi as tars ~‘ 166% 1103 11 E’s, 4 :61? Lassa—a I 1:1 26 fififlfiflflifiafish : 661-6616} 1 éi = ass—66am 0.25 5-} = ass—was a 23. v: HIWdydz r M a—flagiacraala = Emissaganafi : 3 < 1111:: + yt + 1:2 <6 : an M :1: +1»:2 +2: Vs? (A)10a (B)11:.-r (C) 121.: (D) 13s: (E)14rr 29.z4=1—i, zfififii 1 2:? (A) 21i3[ccs:£ + isiri 1] (B) Zliflccsfi + isin (C) 21’3[g0515_fl + min 16 16 16 16 16 16 (D) 21i3[ccs§£+isiu (E) 2"4[cfl52§£+ 55in 16 16 16 16 30.4M—L— c : lsm3i|=l {flirt—2031113 Zari (Em (A) 5—026) (B) —41n:i ((3)216 (D) 1 5 s fififiifi¥$ 31. Find thc valucs cf I (in mA) and V (in Tcults) fcr thc circuit shcwrl in Fig. 31(a). Assume: that bcth dicdcs arc idcutica] and thcir vclt-ampcrc characteristic is shcwu in Fig. 31(1)). (A)1.6?;3.93 (B) 4.4; “S (C) 5; 0.6 (D) 5; —10 (E) 5; 0 ~13 V [1.6 V (a) (b) Fig. 31 32. Find thc value cf 1" far the circuit shcwu in Fig. 32, assuming hcth chcr dicdcs arc idcai with ths hrsakdcwu scltagcs shcwu. (A) 3 (B) 5 (C) U (D) 3.33 (E) 2 Fig. 32 Fig. 33 33. Ccnsidcr thc circuit shcwn in Fig. 33. Assumc the capacitcr is largc sncugh sc that thc vcltags acrcss it riccs uct discharge: thrcugh R apprcciably during cuc cyclc cf input. What is thc stcady—statc cutput vcltagc vault) if vg,.(1‘) = 4sin(c:1t).Allcw a 0.6«V fcrward drcp fcr thc dicdcs. (A) —6 (B) 4siu(mt) — 6 (C) 4siu(rct) (D) 4sin(rct) + 2 (E) --5 n+zeeauaueraeaeinaaaeses W “I. ":1 are 1103 11 fig 5 g; ease v1.1 23 assesses : 3333331 a = ate-measure {1.25 a ! ears-tau 34. Far the circuit shcwn in Fig. 34. find the value cf V5. fer v.- 2 4.65 V. Ailew a 0.1V fcrward drep fer each eenducting dicde. (A) 5 V (B) 10 V (C) 0 V (D) 4.65 V (E) 9.3 V Fig. 34 35. Find the dc Q-peint cellecter current ICQ fer the circuit shcwn in Fig. 35~3?. (A) 5 nuts (13) 15 mA (C) 3.07 mA (D) 1.3 mA (E) 6.41 mA ,6 == 100 V35 = 0.7 V R] = R2 = 10 k9 Neglect r... and assume all 5003'] Fig. 35-3? 36. Find the vcltagc gain A... 2 mtg/um fer the amplifier shcwn in Fig. 35—37. (A) 1 (B) —32.22 (C) 0.933 (D) 0.996 (E) 32.22 37. If the resister R2 is rcrncved frern the circuit cf Fig. 35—37, find the dc Q—peint cciiectcr current {.99 again. (A) 15 mA (13) 12.33 inA (C) 1.3 ntA (D) 14.3 InA (E) 1.3? mA 33. Assume the OP amps in the circuit cf Fig. 33 are ideal. Analyze the circuits tc find the values cf rm and 11.3.2 (bath in velts). (A)-12;—4 (B) 2; —2 (C) *2; —4 (D) 2; —4 (E) "2; 2 asamauaséfiasa _ __-. a; 11 as 5 a I raises a u 213 message: : assets-«1 6} ~ assesses 0.25 a = $§T§tfit Fig. 33 39. Determine the minimum SOP expressinn fur the lcgic functicn F = As+ ABCD+ AC5+ .435 + AB+ ABC+ 3513+ ABCD. (ma-tamer?" (a) A+Eifi (C) 1 (D) “damn (E)A+H'C§ 40. Find the minimum SOP expressicn fur the nutput cf the lcgic circuit cf Fig. 40. (A) A (a) a (C) c (13) ABC (B) as + c A B Fig. 40 ifififii 41. In reversible, adiabatic expansicn cf an ideal gas (A) an > 0 (13):)1-1 a: 0 (C) as > 0 (D)AG > U (EMG <2? 0 42. Pure sclid metal is melted iscthen'nally and iscbarically at 1 atm. and at its equilibrium melting temperature. Which cf the statement is right (man: 0 (B)AH > 0 (C) £3 < 0 (D)AG < 0 (E)nG .3» 0 43. Fur supercculed pure liquid metal frczen iscthermally and isubaricall},r at a temperature 25°C beluw its equilibrium melting paint, which cf the statement is right? (A) LEI—I > 0 (B) 5H < 0 (C)AS :> 0 (D)AG=U (E).dG :> 0 44. A black cf sclid metal initially at 900°C is quenched in ccld water at cunstant P=1 atm. The change cf entrcpy is (A) .2113 = 0 (B) 213.8 s: O (C) $3 > 0 (D) :18 E U (E) Impussible tn tell 45. An endcthermic chemical reacticn cccurs spuntanecusly within an adiabatic. iscbaric system. The change cf Gibbs free energy is (A) AG 3." {J (B) LEG <1 0 (C) AG = O (D) 13G g t) (E) Impcssible tc tell 46. A It} at.% suluticn cf carbcn in ircn at 1560):, has an activity cf 0.178 referred tn the graphite standard state. The activity ccefficient referred tn graphite standard state is (mans (3)1 (0)313 (muses (a)1.?s a+:eeeewwexpeseiawaswssa 14E Elmimfillmfi was 1103 31:. 11 Help 7 E see I 1.2-1 massages—31: : swears 1 a - sash-#333133 0.25 e a seesaw 47. Ceusider a simplified Pb-O-C system with the fellewing pessible selid phase: Pb, PbC03, PbO, PbgOgCOg and a gas phase eentaiuing CO and CO; at 400 K, the degree ef freedem fer an area (eue selid + gas) in the phase stability is (A) 1 (B) 0 (C) 4 (D) 3 (E) 2 48. Fer Au: C11 = 23.? + 5.19 a 10'3 T If mele.I<l, e. = 4.26 x 11)"5 (K, p = 19.3 gfemj, M.W.=197. Fer an initial state ef T = 298K, p = 1 atm, the pressure yeu have te apply te geld at eenstant temperature in erder te inerease its melar enthalpy by 1 J is (A) sane atm (a) #2033 atm (C) 1.93 x 1115 atm (D) 193 atm (s) 1.33 atm 49. Use the same parameters in Preb. #48, te what temperature weuld yeu have te heat geld at eenstant pressure in erder te raise its melar enthalpy by 1 J I (A) w1?24K (B) w 1035K (C) 273K (D) 297.211: (E) 298.041: 50. Same as Preb.#49, what pressure weuld yeu have te apply te Au at 293K in erder te deerease its melar entrepy by 1 JIK? (A)1atm (B) 10 atm (C) 106311111 (0)213 atm (3)22315 atm Wflififi 51. Efijfiffifififilflhigh—strength lew~a11ey steel)fifi$fi§ifiififlj(iuterphase preeipitatienfiflfi I $§fl§fi§i (Alfflc fifilifiififififififiifllfilfiifififiTlfi (Elffic fififiifiififififitb bcc 99516193130ch ififi’flfifififififitb bee @51313‘7'? (1311300 fifilfii’fiilfifififiifiifllfilfiflfiTfl (EM/1.1:??? 52- fiéfiifisfiufififiifi hp ' iflfifi'flfllfi ' Esfiiflfifirfisifldflfflflflafiflfl twinflins) i Wfifiififlfli’z’tlfl * EE $1er112 (mhflp 3333333 Ufa litlifilfifi (3)1101? fisfififig fife ttlfiifiir’l‘) (Qfis'fi's’ligflfiiflfiiifii'iii (mfis'ie’fififiifi‘llfiilfi (Eseeasw‘smw 53. T5Ufl%fli&fifii£fl$fiflm(martensitie trausfermatieuylzwfilifilfifik ? (Al‘a'li’lfii’flflthfiflflflllifilflit (Blfiffififlnflufifiimflbfl 131mm) (Clflfifllflifii’ififiefii (Wfififlfifl (E) @1395? 54. "F5Ullilfir—‘ififiir'i‘sfiMfififlflflflbfliflitflfififlkiflfi5161:9(Pflaflitmfilfiit17fififi (Afiifififlifi (Blifiilfifiififiiifi ((UEE-Eflfififflfifiafifififi (milliliffififififim (E) Willis??? 55. EEfifiWfilfi-fifiittflfififie 3572114133.. 2.3 : T:900MPa, 4.5 : 314003133, 3.11 =- sugszrtasja (specific strength)krjsfi, (mamas (ems-SH (C)T:>A:~S (D) T3333 (E)S::T:=~A 56- T§Ufi99(ffitigue)fifigéfi%i¥fitlj I Wilmrfifififlififilififififiififii ? (MEEmelishedflE (B)W(grauular)E (C)9&%fi(elamshell)fi% (DWEtHEfiifiEquxtrusien and intrusien) (E)fl<fi%$§%l(persisteut slip bands) 57- 1115"”fl}“ifi‘sfifififlfi’fifi9fifflfigueliflifififi? ? (Afilfififlfififlfifiwififlclufiiflfl) (Blififlflfi‘fiH‘fiifiiflifi'fiifilfi (Clfifiifi’filfliifilfijj (D)1%¥Ufi%% H’flifip‘fizfiflfi(marteusite)filfil 51((temperiug) (RENEE: 53. 59. 60. —u—n—r—-——-n—-— - .. Elli—3a initiateeflaeawawaasaaaee Elli] let'- Winner 1103 it 11 "are 8 E ease I n 23. accelerates: : arrears 1 Ia - tats—Itasca 0.25 a I sear-aw _....-""'~. Lllfifififififlfiififflcempact tensile specimen)iflflfifi‘iflfi§]l§lfi(fi'acture tcughness) I fiflfifififlfllfifififii j@(II-‘II'I-IIBIII flpfiniflg difiplflflemmflfififl‘lt—tlfi I fifihfliflifl SOON I Zlfihfifihflfih I EU 530N fifil‘flfii I area 5601*»! harass I fitfififimifll- I an 650M eases I Wtfifimfi'tlfi : adherence H441 95%%%~~Eta I SSUN all 560N teachers I EUJlaLiflfit—efifilfikhfifittfl’hfifia‘tfinrfi FF‘ ‘E’ (A)500N (B)560N (C)570N (mason (E)650N 135 %%%F% filZEfiiiiifleg dade) I [BEHEjjgfilfififidfififiness-intensiw factcr increment, leg nK)E’gi§lJflfififi1%fij-fl 363% (Afifiibtrllrélfifi I amaawawa—aala I fifitlfilfiiI’JIfl—Efi (Wfihfifflfitlfi I filfififilfilffifi‘difimfifififilfil I fiflfifikfilfi (C)$"c$§7<%£l§$5 I fiflfidlfiflfiflfiwflfifilfl I lfifllfllfi’hfli‘tfi {Dfi‘cfiififii I filfilfifltffilfirfil$wfififihlfil I (EWIIIIE thffififlfi'is'fi'a I {111}I"I11 l Dita—‘l‘fi’mfiimple slidfi)Bi]fifitfirfiw)ifilfifibfifiifllfifififilfifii I fifflfi 0-400 K 14.2 kl ; 650-350 K a}; 117 kl ; 800-900 K g 149 kJ I nuamfimfiatfig‘raahinnfifiaufifijaagg (A)lfllflflfilfltfifllfilflcrflSS-Slip) ? Ll'lh‘tsaafilfitfifitifinterswfiflfl) ? Elfiflfilfimflifitwfimb) (3)1ataeestawata '- Eljihfimlltllfifi I Eih%fil3fifiia (C)lhial%%l3tllcrt : characterise : anagrams-s (Dllfilhfiiflillfififin i Eli'ilhfiihlfitllflfiit i filflfiifiélfltfiflifilfi (E) {El/16%El’llfifita 1 EPlflFfiElflFfifilh‘lfi ? Elfiflfihtl‘flfi fitfii’hfi 61 62 63 64 65 66 Which statement is NOT ccrrect? (A)Phenens ebey Base—Einstein distributien (B) free electrcns in a metal cbey Fermi-Dirac distributicn (C) Mclecules cf a gas ebey Maxwell-Beltzmann distributicn (D)Phctens ehey Fenni-Dirac distributicn (E) liquid helium at law temperature cbey Base—Einstein distributicn Which statement is NOT ccrrect fer the specific heat at ccnstant vclume? (A) Cs=3R fer Pb at ream temperature (B) CVsBR fer diamend at rccm temperature (C) electrcns in metal centribute signicantly te Cv at ream temperature (D) At low temperatures, Cy decreases with decreasing temperature. (E) Einstein’s fenuula cf specific heat apprcaches 3R when hleIS-‘IIkT. What is the average electren energy at T=OK in metals? (A)0.3 sf (B) 0.5 Hf (C)0.6 31“ (D) 0.3 cf (E) 3f (afis the Fermi energy) Which metal has the highest Fermi energy? (A) Li (B) Na (C) K (D) Al (E) Cs The structure cf a tunneling juncticn is metallinsulaterlmetal. Which statement is ccrrect fer the tunneling current I ’5’ (A) I increases with increasing the barrier height cf insulater. (B) I enly depends en the resistivity cf metals. (C) I increases with increasing the thickness cf metals. (D) I decreases with the (E) I decreases with increasing the thickness cf insulater. What is the relatienship between the electren energy E and its density cf state Z(E)? tc ms“? (3)13 (C) a—1 (me2 (E)E"‘2. thickness cf metal. ZOE) is prcperticnal DLL—l“: feififififlflfilfifieflfififiififl%$¥fi§%fl fifi] fiififii iflflflfli $iihfinnillfl3_iii.~_n_-.1wl. .. gas 9 E fi-EEE I L1 213 fibfififlfifiifih ? Efi—Efifi 1 5} * fifihwflfififlm 0.25 56* * 5E§$Elfi s 6T Censider a system with Fermi energy EF. Fer what temperature is the number ef electrens at 0.5 By equal te 90% ef the gem-temperature number at 0.5 E12? (hint: 1n(0.11) = —-2.2, k: Beltzmann censtant) (A) 0.46 EP- (R (B) 0.23 EF (1: (C) 2 BF (k (D) 5 EF fk (E) BF fk 68 When a particle is cenfined in a 1-D bex with the dimensien L, what is the expected value ef the mementum. (A) at? (B)4L (C) a L3 (e) 0 (E) 27L 69 The resistivity ef Cu is 1.72K10‘3. Estimate the mean free path I between cellisiens ef the free electrens in Cu. (the free electren density in Cu = 3.481s It"!23 m'3, and the Fermi velecity is 1.5?){10'5 He’s, electren mass = 9112:1041 kg and its charge = 1.6a10‘19 C) (Ans urn (B) 380nm (C) 3nm (D)3000nm (E) 0.33 nm 70 The beuneary ef the first Brilleuin zene ef a twe-dimensienal square lattice with dimensien a eccurs at k w (A) m’3a (B) ae'Za (C) area (D) nit-ta (E) a: fifl’fififi T1. Which ef the fellewing cempeunds is the mest stable diene? b m0/ GIT!)ng 72. Which ef the fellewing is net an arematic cempeund? 3a) m b) __ B) o d) B) e U 96 73. Which ef the fellewing is the best methed fer preparing CH3Br? (A) CH30H + HBr (B) CH30H + NaBr (C) CHg‘OH + Br; (D) CH30H + Br‘ (E) CH30H + Er+ 74. Abserptien ef UV—visible energy by a melecule results in: (A) vibratienal transitiens (B) electrenie transitiens (C) retatienal transitiens (D) electren spin transitiens (E) nuclear spin transitiens 75. What 111?: value weuld yen predict fer the mest stable fragment peak in the mass spectrum ef 4—ethylheptane? (A) 123 (B) 127 (C) 113 (D) 99 (E) 85 76. Which ef the fellewing cempeunds gives the highest chemical shift in the 1H NMR spectrum? fl) ‘3) G) d) e) O O (CH3)3N (Grim: (01494311 77. Which is the best methed fer carrying cut the fellewing reactien? COGH ——--— (A) Teen; then HNegxmso. (B) CHgClr’AlClg; then HNOgngSOa; then KMnin’H: heat (C) CHgClr’AIClg; then KMnOJIT, heat; then HNOgfligSOa jL—ltifiiiiifil‘a“Iiififififidfiffilfiififiifiigéfl 131E HEI$ZIE 4&3 $40iifiiwii¢fifiimfi I Ll EB 00%E'Jfi’flfifiii‘i i §¥0MEET0 1 53‘ ’ fi’ffimififilifl 0.25 5} ' 5E%$§+§i e (D) HNongESOg then CH3CUA1C13; then KMn04fli+, heat (E) COIAlClg; then NaOH, heat; then HN03JH2804 28. Which cf the fellewing menemers is least likely te underge catienic pelymeriaaticn? (A) Prepylene (B) Isebutylene (C) Styrene (D) Vinyl acetate (E) Methyl acrylate 79. When (R)—2-butanel is treated with teluenesulfenyl chleride in pyridine, the preduet will be (A) an achiral ccmpeund (B) a mixture cf diastereemers (C) a racemic mixture (D) a single enantiemer (B) an epimer 80. When dipentyl ether is treated with excess HI, threugh what type cf mechanism dees the majer precinct result? (A) 31.11 (B) 3N2 (C) Sui (D) E1 (E) E2 Ififlfi An element in plane stress at the surface cf a large machine is subjected tc stresses at, = 15,000 psi, Up = 9,000 _ psi, 1,1, = 4,000 psi. Using Mehr’s circle te salve the preblem. The Mehr’s circle is defined as 1,131 is pesitive dewnward and the angle 20 is pesitive ccuntercleckwise. (31-83) V T9300 psi 4,000 psi 4—1 .L Hm... 15,000ps1 1!— l 81. The ccerdinate cf center cf Mehr’s circle is (A) (0 psi, 12,000 psi), (B) (12,000 psi, 0 psi), (C) (12,000 psi, 4,000 psi), (D) (6,000 psi, 4,000 psi), (E) (3,000 psi, 4,000 psi), 32. The radius ef the circle is (A) 3,000 psi, (B) 4,000 psi, (C) 5,000 psi, (D) 6,000 psi, (E) 9,000 psi. 83. The maximum ncrmal stress in the element is (A) 14,000 psi, (B)15,000 psi, (C) 16,000 psi, (D) 12,000 psi, (E) 13,000 psi, A cantilever beam is subjected te a distributed lead and a ccncentrated lead, as shcwn in the figure. (84—435) 5 N 1m 1m 34. The maximum shear-farce in the beam is (A) 4 kN, (B) 9 kN, (C) 14 kN, (D) 19 kN, (E) 24 W 85. The maximum bending-mement in the beam is (A) 9 kN—m, ceuntercleckwise, (B) 10 kN~m, ceunterclcckwise, (C) 10 kNum, cleckwise, (D) 12 kN—m, ceuntercleckwise, (E) 12 kN-m, cleckwise jL—l‘igiflilfiiflifififlifiififilfiifiifii%$ifi$%fi Fig @3153 ” I E. fili‘lfi 1103. . mile—11 WEEK 11..._._E I L1 213 fififlfilfii§$ft : 1¥¥iwifiid 1 53* ‘-' fiddmfifififlifl 0.25 5} * iE’é'rTE‘ifii‘ r A prismatic harAB, fixed at ene end and free at the ether. The bar with the length ef L, shear medulus ef elastieity G, and radius ef r, is suhj eeted te pure tersien under the aetien ef a terque 2T, When the lead is applied statieally, the bar twists and the free end retates threngh an angle a. (86-37) as. The strain energy efthe bar is (A) 4T2L!(Grtr4), (B) 2T2L!(Gar4), (e) T‘ZLKGnr“), (e) 2T2L2r(eer“), (E) 4T2L2f(Gnr4) 37. The angle ef twist is (A) 4TLI(Gnr4), (a) ZTLKGatr“), (C) TLf(Gstr4), (D) Tum-lei), (E) strum—m A prismatie bar ef length L and eress-seetienal area A supperts twe eeneentrated leads P1 and P2, as shewn in the figure. The material ef the bar is a hemegeneeus material with isetrepie preperty. (38-39) 33. The displacement Be ef the lewer end ef the bar under the lead P2 alene is (A) 2P2Lf(EA), (B) P2Lf(3EA), (C) SPZLIQEA), (D) Psz(EA), (E) 2P2Lf(3EA) 39. in erder te maintain its eriginal length, what the relatienship between P1 and P: (A) 21?; = P2: (B) P1 = 21?; (C) P1 = 3P2, (D) 3P] "e Pg, (E) P} = P3 90. Whieh statement listed in the fellewing is wreng fer a hemegeneeus and isetrepie material (A) allewahle stress is yield strength divided by faeter ef safety, (B) faster ef safety is defined as aetual strength divided by required strength, (C) ne thermal stresses will develep when the temperature ehange is nniferm threugheut the struetnre, (D) in erder te have uniferrn tensien er eempressien in a prismatie bar, the axial feree must aet threugh the eentreid ef the eress-seetienal area, (B) Peissen‘s ratie is defined as the ratie ef lateral strain te the axial strain and it is always pesitire. ...
View Full Document

This note was uploaded on 10/18/2010 for the course EECS 216 taught by Professor Davewinn during the Spring '10 term at 카이스트, 한국과학기술원.

Page1 / 11

9203 - IE ‘fi. fi: $1 A}? E (A

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online