9303 - hfiiflh¥%fl 1 fill—FEE RLC $$Efl§¢...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: hfiiflh¥%fl 1- fill—FEE! RLC $$Efl§¢ fififlfltflfi‘? {a} i E R H‘fi'flfifiifi’fiflfifi {h} I E‘fl‘l‘fifflfiflflflgfilfl ME '3'} a {almflflfififlfiihnmfi LEJJEFEEEE 1:. = if . WIFE =1}? + {sac - if -{e}fiEE-HEI$HE ' 1 (mnnancflfi BEE E . 2- Eifi 2 {EEEEEEH‘JEEE {$339354 2 Efifla‘ifififlflfiflfi- WE Hfifilfilgflfi [jJE‘flf’Ffi {c} fififlfififltlfiiflfifiwfi- {dlfii'iflfifiiflfl {E}$E$E§a‘fifi:ifi ' - 3. EFFE'I’F-EEEHQME = Bulfif 2 :u: H)" mm; 1-: 103x+ 1.5 x 1011:1111 Hr] @ng +3 jars-j, {h} Efifiififi + I I’il'filfifir {fllfifilfiiPflrflfingNfilfizf—lfi - I SEES]. fiflfififififi 5 Wm [eliflififi 1 K "1'3 I'll. 4- EfifiiTflflnfl¥fififlfi$ifififi§fiéfififififlfiififiIEfigfififi [fllfifilfla‘ffifli {b} bfiflnilimgfififilflm mulufiflfl}, {Ir-HES? Eifiimhflmtfi'fiflfi. {dlfifl Wfimbfififi. {Elfififififlfifmfiflliflfl WW“)- 5- EH" "fiflfiflflfififific‘? {afilflfl {bill'fiifl @fifi'fiifi. {filflfi’l-j'ui, {Bfiflfi‘fi- 1'5. flflfi3fl¥fiififllfiflfifiiFflffijfiflifi'fififlmfiflflfl? {fiJ-flflfifi, {bllfififiififlmptflflflm {fllflfifiiflumwdlfi'lfi‘ififl [d1j’fifififl, {Blfiflflfifl‘lanfikfifiififi 7- “E H1155" iflifltfififififl H mmfiflflfiflflkiafifififififi- W#fiflfiflflfi¥flfififiifilfi WEE? {a} Eflfl nm, [b] ED 11m, {1:} 2 11111. {d} {12 am, {a} {mi um. 3. ‘Ffiflflfifififiifliflmflfi [quanhlm Bflnflnflnfiflt} Mfififl? {alfififiiflsfi {blfiflizflfl-pflinflfififl it} ufifiifl. {dflfiflfii {BJEIEfiEEI-‘E- J" in. assess-arses, assess“: {awesomeness o iii- efimnseedee ewe]. olefin-seaside e = ma. a Eflifidfifi, d aiaflsssa- {ciaeidielecmoesa Ir: asseesmaseeaeestsm e is. smesseseisefisseisaaeesm ' reieeieaee c loosed = EE- = Fif— , as: q EEELH‘UEEE gear-seas. in. ass no} mo masses—e, areal {Rayleigh} ear 13 = 1.2%, ears so: saaeeeee an a iiflifiififlflflifiilfiififii Efiiifidsflfilfifififi {a} 1513* EH. {b} 5 “ER is] 5‘3 flfl i=1} *5 flit}, {Bl '16 “Elfin Efiflfi ll. Prediel. the molecular geometry.r of lier {a} telrahedral {h} square planar (o) n'igonal pyo'smldal {d} octahedral {e} Irigeoal hiphamidal 12. Withour doing derailed calculation, arrange aqueous solutions with the following eonoentrations in the order of inereasing Inass preteen! of solute- (a) 1% by mass; {is} 1 mg solutei'dL solution; (e) 1 non; {d} 1 ppm; {e} ,- 11111:. {a} biesiasfieid {b} eieid'fi ail} {e} eddia'ibfie {d} a-fih-se-sd-rie {e} efiefidsihfia {a} {ll :11 EIUEDEE'ECfiH1205} {h} Ill :11 Com; {o} ill on CHgflfl-DH {d} [1] m E] {a} diode-Ca [In] bid-sass {e} hfidfiefia {d} uses-odd {e} afiesidsib H. The following is the proposed as a plausible reselion meehanism A + E —=- I {slow} [+E—~E+l'}{fast] What is a plausible rate law for the reaetion {a} Rate = Haiifli {in} Rate = mile? it] Rate = HAJIEB] id} Rats = HEllll (El R = llIEF's]IE’lli'HZJWI |13. Anange the set of the following aqueous soluiions in order of the inereasing freezing points. F ll 5. In the reaction C(s} + SHE] —" osm Kp=5.fi or lflflflt. If, at equilibrium, Pfi3=fl.152 arm, what must he P51. is] 35.34 {b} [L35 {e} 5352 [d] 0.131“ {e} CLETI 115. Arrange the set of the following aqueous solutions in order of the lnereasing pH values [all llflfllfi M Hill {In} Dflfifii‘vl NaDH {e} Cull-‘15 M Baifll-Ijlg {d} 1.6” l [I'l‘ M HE]: {a} afidfibie {in} aid-fest [of] disease {d} dirtiest: {e} ails-deal E11 Which of the following solids are liilzeljrr to be more soluble in aeidio solution"? ' (a) Liis'CI; no EiaCfl; {e} CaCI: {d} CECEU-a {e} seem; in. 13. The felleefi-fié-reaetien is Huenspentaileeus under stem-WW eeelgrg} —:~ ETD-[g] + Elite} I-lew 1e make it a spentarleees reaetien'iI {a} raise the temperature {h} leave: the temperature {e} increase pressure {:1} reduee pressure {d} inerease reselien time 19. The aside ien, N3} is iseeleettenie 1with whieh ef the fellewing'il [3} 140;" ihl NU: {B} CO: {d} 5'32 it} 03 I'll Whieh ef the fellewing is true fer the element senen‘? ta} lt dees net femt ehemieal eempeunds Eh) It exists as the diatemie meleeule Xe: [ejl it has a lewer first ienieatien energjrr than Na [d] It has an extensive athernilstri.r tie} it fen'ns eempeunds with seme eleetrenegative elements. IEEE 21. A veeter field A(x,}',s} = xyi filli, h“ a: A is equal te (a: yi—xi: as yi-xfi m xi—yfi {e xi-yi e) J’i‘xi 12. If? and Q are sealer fields. LB are veeter fields, ah the line element treeter, ah the area element tweeter, and (it: the truiurne eiemenl, which ef the fellewieg equatiens is lT-JCGRRECT‘? Ea} t-tP‘F’QifiP-aewatg {In} ?a[FA}=?FsA+F'E'i-:A re; ?x{?sfi}:?[?-fit]—?1A {a} I: Weekend—Pu.) e2: I??? + QWPMHJ {(P'fi'g + gm?) .d, 23. Ft fanetieu Its) defined in D {- J: i E. has a Feurier half range eesine expaneen fix] = um -I- Zen ees 911E . Whieh et" the fellewing is eerreet? Jul 2 .L 2 L um: I L Hm: false-ELHIMI {a a.=fj‘nrtecusTe {a affluence-Ye I L . mix I 1 . an {d} a“ "ELIEIJEIH'TJI {e} 4a,T —ELf{I]slnTrfir 24. F0: the eiganvaluc pmbitm y' + 3:]; = D, [Ell a: a: r: LIL, yifl] : fl, y'EL] = [I , the eigenvaluw are: in and the eigcnfimcfiuns arcgdlfl, n = LL-.. Which of 1.111: Fulluwing is mntct'? H2151 fli'fl' . MRI L} {c} fir! =CflflT #:1- =51nT w LLII-rléflixldr [c] A filmtifln fix} flan ht: UIFflIldtfll as = Z ":1 fix {a} 2%. “1 Eb} in = int-r} —imx 2.5. The Fflurier transfnrm nfafunntinnflxj is definai by = I: f{.‘-I:)E tit. 11‘ f“1'(I] is the nth Elm:i'hrfiti‘L-rl“.T F [I'M (1')} is equal tn (a) w"F{f{x]} {h} fifw}”F{flxj} {a} {—m]"F{f{x}} [d] {—im)“F-flf{x}} {a} nun: of the ahavc. 25- CumiEr H13 wave aqumiun cgun = u”, u[fl,r] = m: L!) = (1, up, D} = ffi}, u, [1; U} = g{x] far 1] S .1' L. [I S I. By “16 melhud 13f scparatinn Df variables, we have mix. I} = Z InixFHU} , Then I" {I} JI=| iaequaltu {a} sin? {b} sin 21’“ "f a”: mm! . mm: + HF1 51n—. Then 2?. Fallowingthe above pmblcm, it is known that Tflfr} = A“ 4:05 L L I I5 , mi: 2 L . Erma: {a} A" _ELf{x}sme: {b} A“ —ELf(x}51n L at: 2 I. ma: 2 I. 2mm: in} AH=ELflme5de {d} AR=EJInf[x}I:fls L d: E I. mm: {B} A“ =Ejflflxmsfidx 23. The cumplex thnmifln Hz) = T]- 2} can NUT be expanded inn: 3 unique Laumnt merits about 2 =:' ini 2 1 — IllE: reginn {a} |:—:'|.:% {b} lz—il-fil {c} |z—:'|.-.:2 {d} I{|:—;]{JE {c} |zr1|31fi - I: --- . u1.-\.-—-II-rrI—I—|.--I I-F——I—I—I |. |. 29- (in the cumpr 2 plane, lei C be a clusnd circle, muttered at z = [I wifll a radius of}: and uriented 1'3" 13 52+] wunterclnc-kwise, than EL if? is final in {a} l} {b} Em'sinl [c] —2mfsim [:1] Emma: {e} —2mcuar i 3i}.flnflmmmpl¢xzplane,let€betllesquaremntuur fi—+2—+2+2£—rii—10.Theintegral i4dg . l zl—EH—i mammtfl {a}fl [tam [cjin'i [dj—xf (“fl—Err} Mfifl 31. Far 1h: circuit S-llUWl'I in Fig. A. let the transistur have ,6: lflEII and ncglecl: 111: efl‘mt of rfl. Us: F33 '= I21? “if? - and 355mm: all capacitances are infmite. What is 111: dc Q-pnint m"me cumunl ICE? {a} 4.3 m {b} 4.3 mall. {a} ifl "Hill. {:1} 7.5 [HA {is} 4.1 1119*; Figfi Fig. B 32. Find the midband value (if vultage gain Av {= #9.?va for the circuit slim-m in Fig. A. {a} -1115 {In} .315 {c} 4:? {cl} 435 (2)1 33. Find flu: vain: fiffi Fur d1: transistor nf Fig. B. [a] TB {MS-1 {c} Nil [:1] 26 {c} 16] 34.1]1etran5i5tcr Shawn in Fig.3haii iii-1i). Findfltcveiue cicnllectnrclmerlt. {aJ’i'LSM [bjildfimfi {c]l}.T]5nL-55 {ml-1.3m [615% 35. Find the labeIed nude voltage F“; in the circuit ci'Fig. C. {a} lit-1- F (b) —2_I4 ‘h" {c} 2-45 "in" {d} —2.45 V [e] 5 1" +5.1; +5.”. +5V F? Ikfl iii Eé‘i F5 = "E . = D niacin - 101m 5 I T —5"u" Fig. C Fig. D Fig. E n. Hctc: All n-MUSF'ETS in the circuits cf Figs. C-E are identical and have Fm -'~ 2 V and i: = {15 W2. 35. Finii the labeled ncrlc vcitiigc P}. in the circuit 01' Fig. D. {a} 3 V {b} 2 V {c} 3.65 V {r135 V {c} -1.65 F. 37. Find the labeled nude vultege ii; in the circuit iii FigE. {a} 4.24 ii {b} —] ."M ii {c} —5 ii [[1] 5 V {e} ii 1: SE. Find the vcitegc and cum-m labeled in the circuit cf Fig. F, assuming an it]ch cur-ramp. {3,113.14 V, 9.071113. 1 EDM {c}-5V.i}um [EU-r5 iii-3 mfi. {eliEWfllmfi 39. Find flte vcltage gain :11, = Unit's and input impedance cf the circuit shcwn in Fig. G with the switch clcsed. I Ee}as=-fl.5,fi'h=2fl (blsdu=l,R,-..= W {c}A,=-],R,-,,= W {d]A,=i,R¢.=1R [E]ei1.-='ll5, Rm = 3R t-‘tfl. Find the unltage gainA,= Magand input impedance cf the circuit shcwn in Fig. Er wilds the switch cpen. {a}Js=-D.S.Rm=2fl {b]:t,.=l.R.-s= W [cJAs=-I.Ra= W {d]A,.=1,Rm=2R {e}Ae=-fl.5,R¢,=3R flflg 4]. Fur a pure humegeneeas substance, as T—afl K, which cf the fallnwing statement is true? [aiflj e D, T 3? vw-—I 36 3G flfl . {b} —IE|, {c} act}, {d} [E]? — I], [e] ncne nfab-cve is current. l42. Cnnsider a binary eutectic phase diagram. The aH, and as, are the heat cf' mixing ef snlid sniutinn and liquid sciatica, respectively. Assume that phase diagram is ccnscuctec with the ideal liquid saluticn and the regular sulid snlutiun, then, {a} limit]. {b} sees, {it} ail-Lift. {de fiHP‘l}, {e} ncne cf shave is current. I | l | i ‘13. Cunsider die csidaticn cf ccpper, 4 {has}. + {if ECulflm - Them 3 {a} as the temperature increases, an“ aisc increases, {b} as the csygen ptcssm'e increases, as“ alsc increases, [c] as the temperature increases, the amuunt uf «Cult?! increases, '3 {d} an“ is independent cf csygen pressure, {e} ncne cf abuse is ccrrect. w-u-w--—I--|-u 44. Far the reactinn in, + ans-m = 214,, + Mflgm , an“ =a + at. where sec. sac and at T = rE , ac“ =c.§ Then, {a} at TleTE, M is mere resistant tu exidaticn than bl, {b} at 'l‘a'fE, N is mere resistant in asidatinn than M, t- {c} csidatinn cf M by bit} is endethermic, ; {d} the eras-.illpj-r change cf the reactien is pnsitiae, {e} ucne cf abet-re is ccrrect. 45. Ccnsiderthe gas phase reactinn aA+ b E =cC +dD. G'l‘ln'fllfiI-FWJhEn [a] as temperanire increases, the equilibrium censtant KP increases, [b] as temperature increases, the equilibrium ecnstant it], decreases, [c] as teta] pressure increases, the equilibrium ccnstant K1, increases, [d] as rural pressure increases, the equilibrium ccnstant K1, decreases, {e} the effect at temperature cr pressure an El, cannot be determined. 't-I. |4d Chnsidet' the gas phase reacticn ah + h E = c C + d D- Given titH" H}, then [a] as tcmpctattne increases, the Equilibrium ccnstant Ks increases, {h} as temperature increases, the equilibrimn canstant Ex decreasesI [c] as tctal pressure increases, the equilibritnn ccnstant Ks; increases, ! [d]: as tctai pressure increases, the equiiihtitan ccnstant his; decreases, . I (e) the effect of temperature nr pressure an it}; cannat be determined. i . 47- Fat a regular snlid snlnticn, the critical temperature cf the nIis-ciiiliiit}r gap is Tm than {a}fl=I}.15FtT=,[h] nunsnn, [c] taunt“ {a} n=sttrn [e] n=4nn . 43. Suppcsed that a sciatica can he described 1nl‘ith bath the sh‘nplest regular saluticn rncdei, i.e. 3H” = snaps-:3, and the quasichernicai seluticn madel. If the sciatica exhibits a tendencyr toward clustering, which cf the fcilcwing statement is net flue? {a} W {1"} [EA]; —1i2iEM+EEB}]3’fla it} {WANTW ! ['1] T911 {3] TB:- [- 49. Far an ideal A-E snlid snltttinn, which cf the felinme statement is net true? {a} at?“ = arena: ch+ann an} (by a E salt? in at {c} sfi i=1: {a} ass= it lasts {e} as”=tt St]. The ternary phase diagram at ccnstant T. P, is shnwn as belt-w, then {a} tame +sc = as + an, an“ at}; {1:} its AC + dB = 2A+ EC, dfluifl; {e} i‘ar AD + E = AB + {3, nfl“:-fl; {d} far A + EC =E + AU, 5'3"}0; {e} fct' AE- + EC = AC + 213, hGDHJ; Wham 51. meaaataiatseananmdmaanae * aaaanaeaen : enemas-amass. aaansaa~aeses ! taifistfitfitmrins} tbiflhteatte‘nvits-htdmd Essissmicni testerasttstmmdendsfic sunflilfli [dlflfiilfitfiinwtsc semantian [ejflflfifitfitceflulss structure} "- i‘ 5:. #1151{inwaceflFfiflfififlfifléafittfififldiFfilsinnlflfiflfinfiafigifii {mm (hm (swim {aw—5E magma 53- ‘FFLIFH -- 'fiflflfiiflfiihipflflpimfiflfl hfirfleninglfifififi T [fllfilfiiifififfifliflfimifllfltil'rfliflih [hfififiiifilflfflflflluflflfltmflimflnfl [filfilféfififlfifitfifl%fifl {d}H§=Tfl{flginEJEE-‘E {fillint'éabfif- 5-4. ' Fflihjfififififlj iffifl‘i'tfmflrttnfiiflc transfunnation]flfifi'flflfifl '? [fllé'FTEFEdathemmflmflflj [Wfififlifiiéfljfiffiflmbil PM} {flflflfljfi Edmfifififl WWEE‘EEJ‘EE‘FE 53- fiifififitflfifififiifififiiswfldflsfifiitflfififlfldfi- ‘? - (fifiEFfiEfl’Ffiflfiffiiflfihflfifififl fhfliilflilifiiflfifiiififlififlifififl {=3} flJfilfl-fiflfflflfflflm (difflifilfiflfiimfilflft hflltflfiF 515- ‘FfiflflflE—fififififlflflfifpearlitcjlffiflftfififi (alfiflaflfléfla {bJEHflEaffififi {fifiififii‘lfififififififififid [dlfllfiiriiifi fiififififl {eflfiflflfirfififllfibfl Piflflfi) 51% E if! fi fi' ELI fife—DAME: : fife-HAW'EC-flfiflfihdn : EFe—[Ififl‘ifufl -fl.4[|r%I-li : nzpc.n_4n%c-n_4nmr «w gEmfifiqghmdmahiiirfljwmgfi {mm-3m}: [hjmflpcm {c]B:-l}:-C:-A {mmmmc [1:] map-cm 58. fifilfifififlfih r WWE—Efiflmmfifimg ‘? Emfi {In-Hi? {cfi mam (em! 59- 'FFHflfl'fl-iflfififiififlfi'fiififl 'E‘ [afiflflfiffi {Hfifihll‘flflfifl {EJMEJE {filfi'fiflflfifi {Elfiifiilflflfififi 50- iEI'JJEEfiT-fi * tfifl' Ffl’dififliflfiepflfififl ' E‘flfliffiflflflfififlflfifiifl’ftfl [fllfi‘tififflcfiéfi * fiflfifiiflfiwéflifilfl T fififlfidwflfii filflfiifi$ ' flhflflfilfl$—Fflfifl ' Hflfiflfificfifl$ {fllfifidhfl$ ' Efllflflfififlfiflifilfl ' fiflflfldwfifl {Elfifififldwfifl ' Elfilfififi.3$¢—Efifilfi ' fifilfifl‘fififlifléfi {eifififiv'hfifii‘i = flfiflfiafilfliflflffl EW 61. When 5415 nm lighi illuminatfi a smfima, the slapping pulentjal is {142 mulls. What will it be far 492mn light? {a} I16? 1:“ (In) [3.33 1F {1:} ELSE V {:11} DA? V {a} 1mm: of the: above ‘? 52. All electrcn and a prctcn have the same 1releeittr. Cnmparing the wavelengths and the phase and git-up vclecities cf their cle nglie waves, which cf the fciicwing statements is incorrect? {a} The eleetren has the Ienger wavelength {in} The electron has the same phase and gran trelceities {e} The pretnn has the same phase and grenp treleeities {d} The electron has higher phase Trelneitgr than the group value,in {e} name at the ahutre 63. The uncertainty.r in the pasitien et" a certain particle is equai ta twice its dc Ercglie wavelength. What is the minimum percentage et'uiteertainty in its ntc-tnentum in the same direcliun'? {a} Sfl'ivii {h} lfl% {a} 5% [ti] 1% {e} acne at" the above 64. The lcwest energyr pflSfiibifi far a certain particle trapped in a certain has is 11]!) EU. What are the neat tum higher energies the particle can have? {a} 2 eh“, 3 e'r', {13H e‘r', ti elf, [c} 4 eV, 9 e‘tr', [d] it e‘r’, 4 e‘r' {e} nene ef the abet-re 55. Which excited state [if hpdmgen has an excitaticn energy cf 12.1219 chi? {a} 151 {h} End (e) 3rd {ii} 4th [e] ncne cf the abuse 66. fit" the fellewing quantities, which increases in the Behr made] as quantum number :1 increases? {a} frequency.r cf rerulutien [h] electron speed {c} kinetic energyr {d} electron wavelength [e] nene cf the abuse 6?. Which cf the fnllmaring wave Functinns can he sciuticrt nf Sehrijdinger's equatien far all ‘I-‘flllllrfi 13f I? {a} tpr = A see I {b} pr = A exprir‘ii {c} tp’ = A emf—xii {d} pr — A car I {e} nnnc ei'thc ahcttc 153. A paJtiele is in a has with int'initelgrr rigid walls. Suppeee the walls are in .‘r --* -U2 and .t = +1122. IF til-t. = A ens in]: is a mssihle selutien, what must in, equal? {a} it" = innit-1m is an interger} [ht h, = Semi. {a is an interger) {e} h, = eat}; {a is an interger) [:1] k... _ until. [H is an add intergcr} {e} acne cfthe abcue as. The wave fanatic-n{1M—lljmht}'mHttal-Eksptfieslfl} 15 ea efa harmenic eseillater with a, = (a +ae: e, where h is the Planck‘s censtartt, if; is the eseitlatnr‘s frequency, and h} is the eigenvalue. What the quantum number a is to he? {at} i {it} 2 {c} 3 {d} 4 {e} ncne cf the shutter Ti]. What: is the Dmhfibiiitji' that a particle in a has L wide can he fennel between it = ti and :c = Lt}: when it is in the nth state‘il {a} the {b} “2n {e} Bin {:1} U4” {a} mine el‘ the share Tl. 1n the 'H HI'HIF. at" hemeldehyde {fiHyCHflj the signal t'mm aldehyde pretun will appeal as: [a] a singlet at eheut [1.15 ppm [h] a singlet at aheut 9.3 ppm [e] a triplet between T and 3 ppm {d} a deuhlet at abdut Ill] ppm {e} nan: efdte above are ehrreet T2. What is the pmduet hf the eynthetie aequenee below? men. [-IB: I.Me.Eefl Fee 0‘ -—-—--—-—I- —-|- m 1. them Ethel; 3.150" 0e DUI-t {1:} cm H [-1 Own 3 in} HE! {d} —r\_|.ml_.l—.|.lun—I_I.I—-_I.I-II----—_a. T3. T0 eenvert a. nitrile ten primary amine yeru must: [a] hydrolyze it with water {hjreduee it with hydrogen or LiAlI-L {e} uxidize it with ehmmie aeid [d}euhst_itute it with an alley] halide l [elneI-ne ef the eheye are edrreet T4. Identify the kete form [If the fellewing :t'lfll. V {a} l—penten—3 ene {h} [flfi-penten-E-une {e} I-pentmflne [d1 {El-mm [e] mane ef the ahnye are eerreet H :I'i'fi. Reecticn ct' excess Grignmfl reagent with diethyl fiEITbflfltlit, shcwn beiew, gives. sin]: I D Etc/“\oe'c {a} ester {b} ketcne {e} seccndary ulcuhel {d} tertiaryr eicuhel {e} acne cfthe ubcve 1'6. Which is the least reactive tcwerd nuclecphjles‘? {a} ketcne {h} ester [c] amide {d} ucyl halide [e] aldehyde TI". Which can be reduced by catalytic hyfirugmtaticn? {a} carbuxyiic acid {b} ester [c] uruide [d] elkyne (e) aflct't'ne ehuve TE. Which of fltese bends would have the etc-5t intense stretching vibraticn? {a} H-H {in} HA!) {c} H—N {d} l-I—C '_ {e} H—E '39. Which ecutpcund belcw fits the fellcwing IH NMR data? triplet E 1.12 ppm {3H} singlet ii L93 ppm {3H} quartet E 4.0? ppm {BE} in) E; CH3CH1CDCH3 lib} {e} ncne cf the ubcve If].- :I l i i D . g i. CH3 DEHgCH; [El]. Which ccmpcund wculd ycu cct except to he aromatic? III is): [but {c} III [d]W {cw Ifljflfi 31-32. a circular hcllaw steel bar hes cuter diameter du= 2 in, inside diameter dl=1 in, length L=3 ft, and shear madulus cf elasticityr {i=12irll]I5 psi. The bar is subjected ta a tcrque cf T=l£HJ fl-lh at the ends- I 3]- 1111: pelar memes: cf inertia cf the crass secticn In. (ital) is is] ISIBE {b} 15 fl £32 [c3132 {d} Tin-fl: [e] still-2 32. The mashaum shear stress in the bar is {a} real} {b} Tastes} [cl Test, cu Tcsiislp} is] Tdsiislpi 33. The tctsica fiailurc ct'a bridle chalk is [a] by tensictt cracking ale-11g a 30'“ helical surface [is] h}! ccrapressicn cracking slung e 313'" helical surface {c} by tensicm cracking slang a drill“ helical surface (d) by cctnptessictt crackng alcttg a 45" helical stufacc [e] by tensicn cracking alang a 45” helical surface 34.111: relationship between madultts cf elasticity E and shear modulus Cl is [v is the Pcissen‘s ratich E E _ it] ._ G = G E[i+tl'_i lwfi—[Hvl {E}E_‘[l+v] mlh—EEHUJ [eifl {1+tr} {all} = 35-36. A simple heart: All“ is subjected tc a ccunterclcclrwise ccuplc cf mcmertt Ms acting at distance a: ficrn the left-hand suppcrt. 35. The shear three at suppartd is {all EMA {b} MEL is] MJIEL] {£1} 4MJL {E} MJHL] ss. The masimmn bedding mcmeat at paint C is is} Eddde is] cMs'L (e) ashram {a} caissL {e} flMnI'IH'L] F 3 31". For a beam ofreetsngulsr cross section with widfli E: and height 2’11, the moment of inertia I and the section modulusSare : E1113 sh? lhha bl]: M3 2s]:2 a I=—J" S=— I=—i 1=—'—'—:I- S: I IL} [2 6 {h} 3 15 {o} 12 m3 3 1 3 2 {a} 11131;, 5:”; {.3} ha, Sflflhh 3 s s s REASIress elementisaiastste ot‘pweshesnm this stress state can be transformed into a state of maximum normal stress 13, at an inclined angle 9, then [a] til-'me 3:45" {b} offi‘tny, 3:45” {o} ofitq, 62313" id] 13521”, 59:23th {e} 131:1“, H=fifl° 39-90. H simple beam AB with an overhang BC supports a oonoentssted load P at the end of the overhang. When solving flse difiereutisl equation of the deflection eun'e tuft-L}, 39. which of the following conditions is “Tong? {a} VlflFU [blt’iflFfl [filt’TflFfl {dIIWIT-Jfi (EifliifiLH Elli. Which of the following resetion at supports is one? {a} serum {h} REP T (e) EffljP i {d} sans-t {e} 33:13- .1. H‘ ...
View Full Document

This note was uploaded on 10/18/2010 for the course EECS 216 taught by Professor Davewinn during the Spring '10 term at 카이스트, 한국과학기술원.

Page1 / 14

9303 - hfiiflh¥%fl 1 fill—FEE RLC $$Efl§¢...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online