{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

mat293_q2_2007_solutions

# mat293_q2_2007_solutions - MAT293F VECTOR CALCULUS Quiz 2...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAT293F VECTOR CALCULUS Quiz 2 15 October 2007 10:05 am — 10:55 am Closed Book, no aid sheets, no calculators Instructor: J. W. Davis Family Name: A . \C) . \bo-Lﬂ‘; Given Name: 80‘ i M , Student #: TA Name/Tutorial Section: FOR MARKER USE ONLY Note: The following integrals and formulae may be useful: [coszﬁdﬂ = i0 + lsin20 + C; fsin20d0 = 2 4 la — —1—sin20 + C 2 4 gfcpdm Qdy = [magi gde; Page 1 of 6 1) For the coordinate transformation x = rcosﬁ, y=rsin6for r€[0, 00] and 6€[0, 7272], by deriving expressions for both J acobians, verify that my) 2 [may 50,6) any) Hint: Recall that d/dx (arctan x) = 1/(1+x2). (10marks) In.- \ Q 1: Fang xr: c039 3C9 ram. \ ‘- 1 r a (23:. value? ‘Er" 5““0 :9 an MW _ °C9\ s v c.0119 “arse w lL‘HQi - ‘3‘: Io \ -".S 4L: ‘3 _ ., _ = _ ,La ,_t = 3.; 93 HG: )‘L 15 x341"- Aﬂ _ it “1 .32., x Us L5 - _ __..— + __.— _____ A W“ at Q: a 1w M“ 373411 new - in: ._ i : .L Lxlki‘ Bah" 114*: 1 f" ___ ~\ QLMG) _ JL'KQ-gi - sign-Ll) éerey Page 2 of 6 2) Let R be the plane region of unit density that is bounded by the hyperbolas: xy=1, xy=3, xZ-yZ =1 and x2-y2=4. Use an appropriate coordinate transformation to ﬁnd the polar moment of inertia 10 = [Roz + yodxdy of this region. Sketch the region in both the x-y plane and the u—v plane. :10 marks) 1.2.“;3 \ /C‘F LL .1303 15% is 3 L 5: u‘ U“: xlﬂl r —L7 'L 'L 1 x =4 U. 13.3.3 R 331::- x u» ‘ “3 “3 “L J :Z‘K, L7. '3' hid-3 JC“ v — L5 1 -: “2‘31_ 111' "-'- "1kx'11. “31) lkxkﬁ) 13L *1»; stun a .1; .. 'L WLR‘LS 'L To "' J (11*;313 = S R S Page 3 of 6 3) Find the second degree polynomial approximation to the function f (x, y) = ‘lxz + y3 near the point (1,2). (Smarks) Jaw u M We) ‘ 3 ﬁx ‘ ﬁ’? 9“ (NA =' if; x” “3 u ’5 A: L .. “L R .1 Rh) :5} J|1 2. SM v kit-N-Xb) + it‘ll» 11"“35) '7‘)!” _ xlﬁsvxl _ "33 _’ Q [\kL)= "f: [1%5311‘2 LIKES) ’7. M 59(1 Qx‘j = li‘li3‘ix1‘Ff) ' 53L _ -3 39;; = -3 1 kxk33)3f7_ \$1.3 (KL) cl -711 -\‘_L L i 1 .5 ‘ 3:31 = 339%) +21% CAI“) 311 d‘ _ 3.3 kxkx'ﬁ - E‘g‘ [w Samba?) = 33 W LIL-.0413) I 4 I, 7; vutL a, +1 MW e 3 4 away; + a m5 at H ) 3 Page 4 of 6 4) Verify GTeen’s theorem for the integral: (jide + sin ydy C where C is the triangle with vertices (1,1), (2,2), (2,0). (14 marks) 5 Q‘ L: =. 1—71 3) )Lr—t CS (épcﬁzl £31714: Q1 CL 1.11 =0 1:? C, 05-35:?— “5: " C5 ﬁbx ==7 x124: ZZDLZ\ LX—Z—E I. ‘3 C(Ltw‘bﬂ M? ?é>¢_ + -‘ j :L— % B c. P— ‘3 at) C, '?-— 1-3 _ t [1%) Jung? Gu- stw‘g - 9m Vbt) 4%" bed: . 1'— \ BMLHDAX = ) JC [ 7:th + smbﬁ) (wit) 0‘ t z L -' _ i L- t: _ 1—4.) ‘) (1{_{1aslmL1-t))cit ’ L4 5 “UL :(l .L m .—. cenl “*1 : 4-93. .._.‘ _-l +3 'i' C l 3 C1: ?= dJL': G : 5:“...E :cL‘b 'L S Zt-o + Siva-i: At -— J 55* ‘L’C " [‘C‘ﬁtl Page 5 of 6 C3 _ \s 1 i g 1 Z L ‘* CmKV-"EBla '— 3‘ (03‘ ‘" E + (m1 =\'§+Lu~ «pm :7 é}?éxj =- cm‘ “3- +\ —cur3?, ﬁg— +gm2— (,o'b\ C. _ .._5_ F .3 G la.) Q a sums =3 é—i *0 A? , .13 :- XS ‘3’) ‘73 x Z L j if? - £5) :11 “ (~L) 0111 = ‘JJXJ 4‘3 3“ ¢ an I \z 3‘ ‘3 2 Pl 7. 2. )(_ .— E (Ix-b _ L 7 - xbc 1+1) “ —J 41 L51:- . = ., 1x. "a. ._ d _ h _. _. +[ __ a Dc - L “a, 1 L 3 3 5) Given a surface deﬁned parametrically by r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k, show that the surface area can be found from: LdS= majjdudv (8 marks) Page 6 of 6 ...
View Full Document

• Fall '08
• J.Davis
• Coordinate Transformation, MAT293F VECTOR CALCULUS, J. W. Davis, TA Name/Tutorial Section, degree polynomial approximation

{[ snackBarMessage ]}

### Page1 / 7

mat293_q2_2007_solutions - MAT293F VECTOR CALCULUS Quiz 2...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online