ODE_Exercises_2010

# ODE_Exercises_2010 - Problems in Differential Equations 1....

This preview shows pages 1–5. Sign up to view the full content.

Problems in Differential Equations 1. First order differential equations Basic concepts 1. Check that the function y = sin x/x is a solution of the differential equation xy ± + y = cos x. 2. Prove that the function y = Cx 3 is the general solution of the differential equation xy ± - 3 y =0 . Find the particular solution satisfying the condition y (1) = 1 . 3. Find the differential equation of the family of circles x 2 + y 2 =2 ax . Show that the following expression define the general solutions or the gen- eral integrals of the indicated differential equation: 4. y = x ( C - ln | x | ) , ( x - y ) dx + xdy . 5. y = x 0 1 x e x dx + C ) ,x y ± - y = xe x . 6. 2 x + y - 1= Ce 2 - x , (2 x + y - 1) dx - (4 x +2 y - 3) dy . Write the differential equation of the indicated family of curves: 7. Parabol y = x 2 ax. 8. Hyperbol y = a/x . 9. Catenaries y = a cosh x. 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 10. Hyperbol x 2 - y 2 =2 ax . Equations with variables separable 1. Solve the equation dy dx = 2 x 3 y 2 +1 . 2. Solve the equation dy dx = y tan x. Solve the given differential equations: 3. y ± = x/y. 4. y 2 y ± + x 2 =1 . 5. yy ± + x =0 . 6. xy ± y. 7. ( x +1) y ± + xy . 8. y ± 1 - x 2 =1+ y 2 . 9. y ± = e x + y . 10. y ± + x sin x y cos y . 11. (1 + y 2 ) xdx +(1+ y 2 ) dy . 12. xydx + 1 - x 2 dy . 13. ye 2 x dx - (1 + e 2 x ) dy . 14. 2 e x tan ydx e x ) sec 2 ydy . 15. (1 + y )( e x dx - e 2 y dy ) - (1 + y 2 ) dy . 16. (1 + x 2 ) dy + y 1+ x 2 dx - xydx . 17. dy - 2 y ln xdx . 18. y ± = cos( x + y ) .
3 19. y ± = 1 2 x + y . 20. y ± =(4 x + y +1) 2 . Find the particular solution of the given equation satisfying the indicated initial conditions: 21. y ± = sin( y - x - 1) . 22. y ± +2 y =3 x +5 . 23. y ± = 3 ± (4 x - y 2 . 24. (1 + y 2 ) dx - xydy =0 ,y (1) = 0 . 25. ( xy 2 + x ) dy +( x 2 y - y ) dx (1) = 1 . 26. y ± tg x = y, y ( π/ 2=1) . Homogeneous equations 1. Solve the equation y ± = y x + cos y x . Solve the following equations 2. y ± = y x + x y . 3. y ± = y x + sin y x . 4. y ± =( x - y ) / ( x + y ) . 5. ( x 2 + xy ) y ± = x ± x 2 - y 2 + xy + y 2 . 6. ( x - y ) dx + xdy . 7. y 2 dx + x 2 dy - xydy . 8. x ( y ± + e y/x )= y. 9. xdy - y cos ln y/x . 10. xy ± = y + x tg y/x.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 11. xy ± - y = ± x 2 - y 2 . 12. ( x 2 + y 2 ) dy - 2 xydx =0 .
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/21/2010 for the course A a taught by Professor A during the Spring '10 term at American International.

### Page1 / 11

ODE_Exercises_2010 - Problems in Differential Equations 1....

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online