# Nummath1 - Numerische Mathematik Vorlesung von Johann...

This preview shows pages 1–8. Sign up to view the full content.

Numerische Mathematik Vorlesung von Johann Linhart Wintersemester 2004/05

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
ii
Inhaltsverzeichnis 1 Einleitung 1 1 .1 F eh l e r an a ly s e ........................... 2 1 .2 K omp l ex i t s a s e ....................... 2 1 .3 L i t e r a tu r.............................. 3 2 Zahlendarstellungen 5 2.1 b -ad i s ch eEn tw i c k lun gr e e l l e rZ ah l en . ............. 5 2 .2 G l e i tk omm ad a r s t e l e e l l e l en. 6 2 .2 .1 Ab s chn e id ....................... 6 2 .2 Rund ......................... 6 2 .3 R e la t iv e rundab so lu t e rF l e r.............. 7 2 .4 Rundun g s f l e r...................... 7 2 .5 G l e i a a r i thm e t ik. ................. 8 3 Fehleranalyse 9 3 .1 V ek to r -undM a t r ixn o rm ................... 9 3 ond i t ione in e rAu fgab e..................... 1 2 3 .1 A l lg em e e s........................ 1 2 3 i t iond e rG rund r e chnun g sa r t ......... 1 4 3 .3 K i t e sl ea r enG l e i chun g s sy s t s ...... 1 7 3 i t e sA o r i thmu s................... 2 4 3.3.1 Unterschied zwischen der Kondition eines Algorithmus undd e rK i t e e ............ 2 4 3 .3 .2 V o rw ä r t san a s e...................... 2 6 iii

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
iv INHALTSVERZEICHNIS 3 .3 .3 Rü c kw ä r t san a ly s e..................... 27 4 Lineare Gleichungssysteme 31 4 .1 D a sE l im in a t ion sv e r fah r en. ................... 31 4 .1 .1 P iv o t i s i e run g ....................... 32 4 .2 Z e i tk omp l ex i t...................... 33 4.1.3 Lineare Gleichungssysteme mit mehreren rechten Seiten 33 4 .2 L ea r eAu sg l e i ch s r e chnun g ................... 34 4 .2 r ob l em s t e l lun g...................... 4 .2 Äqu i l ib r i e g....................... 4 .3 N o rm a lg l e i chun g en . 35 4.2.4 QR -Z e r l egun 39 5 Interpolation 45 5 r l s t e l g.......................... 45 5 .2 Ex i s t en zundE ind eu t igk e i td e sIn t e rpo la t spo lyn om s.... 4 6 5 .3 F eh l e r ab s ä t zun g ........................ 47 5 .4 B e r e gd e t e t s............. 50 5.4.1 Die Lagrange’sche Form des Interpolationspolynoms . . 51 5 .4 .2 D a sN ev i l l e -S a.................... 53 5 .5 Ex t r apo t ion. .......................... 55 5.5.1 Extrapolation für x =0 ................. 5 .5 .2 Summ a t ione e rR e ih i t t e l sEx t r t ion . .... 5 7 6N um e r i s c h eD i f erenziation 59 6.1 Motivation. ............................ 5 9 6.2 Di f e r z ia t iond e t e t s........... 60 6 .1 Ab s ä t e sV e r r s f l e r s ........... 6 .2 F l e r an a s e ....................... 62 6 .3 Zw e i t eAb l e i tun g ..................... 64 6.3 Di f e r z t iondu r chEx t r t ..............
INHALTSVERZEICHNIS v 7N um e r i s c h e I n t e g r a t i o n 6 7 7 .1 N ew ton -C o t e sF o rm e ln. ..................... 6 7 7.1.1 Geschlossene Newton-Cotes Formeln . . ........ 6 8 7.1.2 O f en eN o t e o e ............. 7 1 7.1.3 Rundungsfehler bei den Newton-Cotes Formeln . . . . 73 7 .2 Zu samm g e s e t z t eF o e ln . .................. 7 3 7 .3 R omb e r g - In t eg r a t ion . ...................... 7 6 8 Iterative Lösung von Gleichungen 81 8 .1 D a sK on t r ak t ion sp r in z ip. .................... 8 1 8 .1 .1 A l lg em e e s........................ 8 1 8.1.2 Anwendung des Kontraktionsprinzips im R s ...... 8 5 8 .3 K v e r g zo rdnun g.................... 8 9 8 .2 D a sN -V e r fah r en . 9 3 8 .3 Sp e z i e l l ee ind im s a l eI t e r a t sv e r r en. ......... 9 6 8 .3 .1 In t e rv a l lh a lb i e run g .................... 9 6 8 i eS ek an t enm e th od e................... 9 8 8.3.3 Das Newton-Verfahren bei mehrfachen Nullstellen . . . 98 8 .4 Nu l l s t e l l env onP o lyn om ................... 10 0 8 .4 l e e 0 8 a sH o rn e r -S ch a.................... 3 8 .3 D i eM e ev onMu l l e r................. 6 8 .4 D i e onB a i r s tow. ............... 8 8 .5 I t e r a t iv eL ö sun gv onl e a r enG l e i chun g s sy s t 11 2 8 .5 l e e 2 8.5.2 Das Jacobi-Verfahren (Gesamtschrittverfahren) . . . . 113 8.5.3 Das Gauß-Seidel-Verfahren (Einzelschrittverfahren) . . 115 8 .4 R e lax a t e r r 6

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
vi INHALTSVERZEICHNIS
Kapitel 1 Einleitung Am 2. 12. 2004 wurde ein zusätzlicher Abschnitt "Iterative Lösung von linearen Gleichungssystemen" angefügt!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/20/2010 for the course AERONAUTIC A.E. taught by Professor Allwyn during the Spring '10 term at Anna University Chennai - Regional Office, Coimbatore.

### Page1 / 128

Nummath1 - Numerische Mathematik Vorlesung von Johann...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online