# Exam #3 Practice Test Answers - Math 202-01 — Test 3...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 202-01 — Test 3 Name: Show appropriate work on all problems below. Calculators may not be used on this exam. Point values are listed aﬁer each problem II n l 2 1 statement. Place answers in the blanks provided Formulas you may need: Zk = "012+ I) Zkz = W ll=l k=1 1. For a monopolist’s product, the demand function is p = 14 — q and the average cost function is E: 2 +30— . Find the 4 quantity and the price that maximize proﬁt. (10 points) , a ._. Quantity: Q .4 , z c - " ~' C .- /{ r K _. ) ﬂ, / , /0 f i Price: 2 21' ” " i - -' I r ’ '2; aging ; 3: vi, 7‘/‘/’ C ,- Zf ( / if i f / \ > 'i/ﬁ’f '20 (ﬂair avert/«.5 d7" (fa/#9 .ﬁ_ ﬂ}: “’1,2&;:_, /’ [qr/\$7 [/I ) 7 " /’ 7 :7; ,m v. .2 ewe” ,— .— :: 0 : 7 ' ’- , .. f ’ ’77 iii/‘2— .2 :/2—- (Widen/6’ JIM)“ 9"“ 2. In each problem below, ﬁnd the indeﬁnite integral. (6 points each) a-) l<5+t>dt we . 2 §»£+//;2£.+c 6 N/ '31 --j ,2 b. —-dx :; ~cY rév K " «gatﬁa .) If d éA .. _ w 3 \$ é (“Kw 1) W“ :3 “’- ’9’ , 3/; x c) J(2«/;+ex)dx Lf/ﬁx ﬁe, +C._. \,_ ~ , 33‘ , :2. d.) for2 +12t}(t3+6t2)6-"at 4/» z’ 1* et- ’k.u d a ﬁt: 5 5’5?/2é / ’2, 3 : a "1/4 42/:— é’t“;/3f)/z‘ ‘ y ‘7 / { 9’ 2' 7 ~- I ’ ’ f—ét f (.1 3/7 1/ fr: I /7 f 2 e I(~/;+2) dx 3J§ r , z 7 ‘ (ii Ax 3x.) 57 V 7. / ‘ (\1 s I 03L xii” J, 'L/ LRQ-Qwi'zx ' '1 3 *" f—‘i-z 9 ‘2; Y -; ‘7?’ gall +C— " %(p)( B J ‘2 [/2 {aria )vlc ‘ , 3 g/Z (vhf-+2) 1'16”. [’jQ’in-E'Vy’ Xf'SX +6, '5] y — . i 2,3 . 71/ J 0“"; 3(031‘650 :7 9/50 5" V " X x «=17 x:o ’ -’ 3 2 be —; Zexzf at +5” _..>7 1/ {Kg}: 7315143720116; :5” 7-7627; r > 4. Evaluate the sum below. Simplify your answer. (6 points) / ‘ 7 - . r 3f” ‘( r » Zkz ’7 (’7+/)(1(?>*/) 7, 5’ a; r 7, as 20 ————-——-.--*—-~ ; / ’ ’32:“ = 7’ 2% 52. 5. Sketch the region in the ﬁrst quadrant that is bounded by the given curves. Determine the exact area of the region by considering the limit of Sn as n —» 00. Use the right hand endpoint of each sub-interval. (12 points) y l ﬂx)=2x, y=0,x=1 Luz-£— .— SA *) mm mm + l + Z (Mm/2) . I, l I I'linl/I‘ ' ' ..-’ i 1’21!) / 2 3” It“ I , gm , a . . : + A ,.. A I I1 1. 4 K + /n It I l 2}“: ‘l‘n (‘3‘. R / .. . - +ult 4-11 X 'N'é‘lf‘) t: 7,-2o/f ([+ﬁf3 >\$71<V §<) l1 ’1 ,3 n-+l_ l+yn /,‘m(l+%t>: I “71’ ’ have 6. Evaluate each deﬁnite integral below. (8 points each) p..— w . /,_ M=X~3 .jé . ,»;,,,_'1-_.— _‘ . c.) J dx ' _ 1- '? 7. M- 0 x + 1 “LIL I g? 53V s i- x H: xr? “r i. )‘ .v k “Ex #3" = \ X f l 4, ~'"\‘ -—-—--—-"" L/ xxx“. L/ a I , u, I ,. 1 .4, ‘a t"; , I .V- — ‘I‘ A > {id/jgﬁg. A Tax [ELI/l) .. gir/fj, 0/ (0+0‘1‘0‘f \ ~ V a I: 5," L 7. Use a deﬁnite integral to ﬁnd the 'area of the region bounded by the curve y = ﬁx) = x3, the x axis and the lines x = — 1 and x = + 1. Sketch and shade the region as well. (10 points) ...
View Full Document

## This note was uploaded on 10/20/2010 for the course MATH 201 taught by Professor Smith during the Fall '08 term at Washington State University .

### Page1 / 4

Exam #3 Practice Test Answers - Math 202-01 — Test 3...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online