{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Physics131_L06WI10

# Physics131_L06WI10 - Physics 131 Mechanics Lecture6 one...

This preview shows pages 1–10. Sign up to view the full content.

Physics 131 - Mechanics Lecture 6 one dimensional Motion January 20, 2010 Homeyra Sadaghiani

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Oct 24, 2010 Physics 131 - Lecture 6 Announcements HW#3 is due at 9 a.m. on Wed, January 27 th We will check your clicker registrations on Friday. 2
Week Date L# Lecture topic Text reading HW 1 4-Jan 1 Description of course structure, SI units 6-Jan 2 Motion, position, velocity, acceleration 1.1-8 (26 P) HW#0 8-Jan 3 One-dimensional motion 2.1-3 (14 P) 2 11-Jan F1 Furlough (Constant acceleration -Tutorial)   13-Jan 4 Vectors 3.1-4 (13 P) HW#1   15-Jan 5 Constant acceleration 2.4-7 (14 P)   3 18-Jan H1 Holiday (Martin Luther King's Birthday)   20-Jan 6 Two- dimensional motion HW#2   22-Jan 7 Circular and relative motion 4 25-Jan 8 Force, mass, inertial frames 27-Jan 9 Newton’s first & second Law HW#3 29-Jan E1 EXAM 1- Chapters 1-4 Oct 24, 2010 Physics 131 - Lecture 6 Lecture Schedule We are here! 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Oct 24, 2010 Physics 131 - Lecture 6 ö ö r xi y j = + r 2 1 2 2 1 1 ö ö ö ö ( ) ( ) ö ö r r r x i y j x i y j xi y j = - = + - + = ∆ + r r r Displacement, Velocity, and Acceleration   4
Oct 24, 2010 Physics 131 - Lecture 6 Velocity Vectors 2 1 2 2 1 1 ö ö ö ö ( ) ( ) ö ö r r r x i y j x i y j xi y j = - = + - + = ∆ + r r r av r v t = r r 0 lim t r dr v t dt ∆ → = = r r r 0 0 0 0 ö ö ö ö lim lim lim lim t t t t r xi y j x y v i j t t t t ∆ → ∆ → ∆ → ∆ → + = = = + r r ö ö ö ö x y dx dy v i j v i v j dt dt = + = + r 2 2 ; arctan y x y x v v v v v θ = + = 5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Oct 24, 2010 Physics 131 - Lecture 6 Example: Velocity of a Sailboat   A sailboat has coordinates (130 m,  205 m) at t 1 =6.0 s.  Two minutes later  its position is (110 m, 218 m).   (a) Find      ;  (b) Find     ;  av v r av v 6
Oct 24, 2010 Physics 131 - Lecture 6 110 m 130 m 0.167 m/s 120 s xav x v t - = = = - Example: Velocity of a Sailboat ö ö av xav yav v v i v j = + r 218 m 205 m 0.108 m/s 120 s yav y v t - = = = ö ö ( 0.167 m/s) (0.108 m/s) av v i j = - + r 2 2 ( 0.167 m/s) (0.108 m/s) 0.199 m/s av v = - + = o 0.108 m/s arctan 147 0.167 m/s θ = = -   A sailboat has coordinates (130 m, 205 m) at t 1 =6.0 s.   Two minutes later its position is (110 m, 218 m).  (a) Find       ;  (b) Find     ;  av v r av v 7

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Oct 24, 2010 Physics 131 - Lecture 6 Example: Velocity of a Sailboat (continued) (c) For  t  20.0 s, the position of a second  sailboat as a function of time is:  x(t) = b 1 + b 2 t   and   y(t) = c 1 + c 2 /t  , t (s) where  b 1 =100 m,  b 2 =0.500 m/s,  c 1 =200 m, and  c 2 =360 m . s.   Find the instantaneous velocity of the sailboat as a function of  time for  t  20.0 s 8
Oct 24, 2010 Physics 131 - Lecture 6 Example: Velocity of a Sailboat (continued) (c) For  t  20.0 s, the position of a second sailboat as a  function of time is:  x(t) = b 1 + b 2 t  and  y(t) = c 1 + c 2 /t  , where  b 1 =100 m,  b 2 =0.500 m/s,  c 1 =200 m, and  c 2 =360 m .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern