{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Physics131_L06WI10 - Physics 131 Mechanics Lecture6 one...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Physics 131 - Mechanics Lecture 6 one dimensional Motion January 20, 2010 Homeyra Sadaghiani
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Oct 24, 2010 Physics 131 - Lecture 6 Announcements HW#3 is due at 9 a.m. on Wed, January 27 th We will check your clicker registrations on Friday. 2
Image of page 2
Week Date L# Lecture topic Text reading HW 1 4-Jan 1 Description of course structure, SI units 6-Jan 2 Motion, position, velocity, acceleration 1.1-8 (26 P) HW#0 8-Jan 3 One-dimensional motion 2.1-3 (14 P) 2 11-Jan F1 Furlough (Constant acceleration -Tutorial)   13-Jan 4 Vectors 3.1-4 (13 P) HW#1   15-Jan 5 Constant acceleration 2.4-7 (14 P)   3 18-Jan H1 Holiday (Martin Luther King's Birthday)   20-Jan 6 Two- dimensional motion HW#2   22-Jan 7 Circular and relative motion 4 25-Jan 8 Force, mass, inertial frames 27-Jan 9 Newton’s first & second Law HW#3 29-Jan E1 EXAM 1- Chapters 1-4 Oct 24, 2010 Physics 131 - Lecture 6 Lecture Schedule We are here! 3
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Oct 24, 2010 Physics 131 - Lecture 6 ö ö r xi y j = + r 2 1 2 2 1 1 ö ö ö ö ( ) ( ) ö ö r r r x i y j x i y j xi y j = - = + - + = ∆ + r r r Displacement, Velocity, and Acceleration   4
Image of page 4
Oct 24, 2010 Physics 131 - Lecture 6 Velocity Vectors 2 1 2 2 1 1 ö ö ö ö ( ) ( ) ö ö r r r x i y j x i y j xi y j = - = + - + = ∆ + r r r av r v t = r r 0 lim t r dr v t dt ∆ → = = r r r 0 0 0 0 ö ö ö ö lim lim lim lim t t t t r xi y j x y v i j t t t t ∆ → ∆ → ∆ → ∆ → + = = = + r r ö ö ö ö x y dx dy v i j v i v j dt dt = + = + r 2 2 ; arctan y x y x v v v v v θ = + = 5
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Oct 24, 2010 Physics 131 - Lecture 6 Example: Velocity of a Sailboat   A sailboat has coordinates (130 m,  205 m) at t 1 =6.0 s.  Two minutes later  its position is (110 m, 218 m).   (a) Find      ;  (b) Find     ;  av v r av v 6
Image of page 6
Oct 24, 2010 Physics 131 - Lecture 6 110 m 130 m 0.167 m/s 120 s xav x v t - = = = - Example: Velocity of a Sailboat ö ö av xav yav v v i v j = + r 218 m 205 m 0.108 m/s 120 s yav y v t - = = = ö ö ( 0.167 m/s) (0.108 m/s) av v i j = - + r 2 2 ( 0.167 m/s) (0.108 m/s) 0.199 m/s av v = - + = o 0.108 m/s arctan 147 0.167 m/s θ = = -   A sailboat has coordinates (130 m, 205 m) at t 1 =6.0 s.   Two minutes later its position is (110 m, 218 m).  (a) Find       ;  (b) Find     ;  av v r av v 7
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Oct 24, 2010 Physics 131 - Lecture 6 Example: Velocity of a Sailboat (continued) (c) For  t  20.0 s, the position of a second  sailboat as a function of time is:  x(t) = b 1 + b 2 t   and   y(t) = c 1 + c 2 /t  , t (s) where  b 1 =100 m,  b 2 =0.500 m/s,  c 1 =200 m, and  c 2 =360 m . s.   Find the instantaneous velocity of the sailboat as a function of  time for  t  20.0 s 8
Image of page 8
Oct 24, 2010 Physics 131 - Lecture 6 Example: Velocity of a Sailboat (continued) (c) For  t  20.0 s, the position of a second sailboat as a  function of time is:  x(t) = b 1 + b 2 t  and  y(t) = c 1 + c 2 /t  , where  b 1 =100 m,  b 2 =0.500 m/s,  c 1 =200 m, and  c 2 =360 m .
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern