{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

20DF06hw6sol

# 20DF06hw6sol - Math 20D Homework 6 Solutions 7.6 10 First...

This preview shows pages 1–3. Sign up to view the full content.

Math 20D Homework 6 Solutions November 10, 2006 7.6 10. First find e-values and e-vectors: ( - 3 - λ )( - 1 - λ ) + 2 = λ 2 + 4 λ + 5 = 0 λ = - 4 ± 16 - 20 2 = - 2 ± i Complex e-values, so just need one: λ = - 2 + i . - 1 - i 2 - 1 1 - i x y = 0 0 ( - i - 1) x + 2 y = 0 ~v = 2 1 + i Expand ~ve λt using Euler’s formula, and find real and imaginary parts: 2 1 + i e ( - 2+ i ) t = 2 1 + i e - 2 t (cos t + i sin t ) = 2 e - 2 t cos t e - 2 t cos t - e - 2 t sin t + i 2 e - 2 t sin t e - 2 t cos t + e - 2 t sin t Fundamental matrix: Ψ( t ) = 2 e - 2 t cos t 2 e - 2 t sin t e - 2 t cos t - e - 2 t sin t e - 2 t cos t + e - 2 t sin t Ψ(0) = 2 0 1 1 Ψ - 1 (0) = 1 / 2 0 - 1 / 2 1 Solution to IVP: ~x ( t ) = Ψ( t - 1 (0) ~x (0) = 2 e - 2 t cos t 2 e - 2 t sin t e - 2 t cos t - e - 2 t sin t e - 2 t cos t + e - 2 t sin t 1 / 2 0 - 1 / 2 1 1 - 2 = 2 e - 2 t cos t 2 e - 2 t sin t e - 2 t cos t - e - 2 t sin t e - 2 t cos t + e - 2 t sin t 1 / 2 - 5 / 2 = e - 2 t cos t - 5 sin t - 2 cos t - 3 sin t 12. (a) ( - 4 / 5 - λ )(6 / 5 - λ ) + 2 = λ 2 - 2 / 5 λ + 26 / 5 = 0 λ = 2 / 5 ± 4 / 25 - 104 / 25 2 = 1 / 5 ± i (b) Since the real part of λ is positive, the equilibrium point at the origin is a spiral source. To determine clockwise or counterclockwise, compute - 4 / 5 2 - 1 6 / 5 1 0 = - 4 / 5 - 1 and - 4 / 5 2 - 1 6 / 5 0 1 = 2 6 / 5 . Vectors along the x 1 -axis point down and to the left; vectors along the 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 x 2 -axis point up and to the right. This implies that trajectories are spiraling clockwise away from the origin.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}