formulasheet_exam1

# formulasheet_exam1 - FORMULA SHEET FOR MIDTERM I(1(2(3(4(5...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: FORMULA SHEET FOR MIDTERM I (1) (2) (3) (4) (5) P1 = (x1 , y1 , z1 ), P2 = (x2 , y2 , z2 ) ⇒ |P1 P2 | = (x2 − x1 )2 + (y2 − y1 )2 + (z2 − z1 )2 . Sphere : (x − a)2 + (y − b)2 + (z − c)2 = r2 . u · v = u1 v1 + u2 v2 + u3 v3 = |u||v | cos θ. a · a = |a|2 , a · (b + c) = a · b + a · c, a · b = b · a, (ca) · b = c(a · b) = a · (cb), 0 · a = 0. F ·D D Scalar projection: compD F = F cos θ = |D| . Vector projection: projD F = compD F |D| . (6) u × v = u2 v3 − u3 v2 , −u1 v3 + u3 v1 , u1 v2 − u2 v1 . (7) |u × v | = |u| |v | sin θ (8) u × v = −v × u, u × (v + w) = u × v + u × w, u · (v × w) = (u × v ) · w, (u · w)v − (u · v )w. (9) Straight lines: (x0 + at, y0 + bt, z0 + ct) or y − y0 z − z0 x − x0 = = . a b c (10) If n = a, b, c is a normal vector, then n · x − x0 , y − y0 , z − z0 = 0 (11) dy = dx (12) b a dy dt dx dt u × (v × w ) = or d dt a(x − x0 ) + b(y − y0 ) + c(z − z0 ) = 0. dy dx dx dt 2 , d2 y = dx2 dx dt as long as dx = 0. dt + dy dt 2 dt. r (t) (13) Tangent vector: r (t) = f (t), g (t), h (t) . Unit tangent vector: T (t) = |r (t)| . d d d (14) dt [u(t) + v (t)] = u (t) + v (t), dt [c u(t)] = c u (t), dt [f (t) u(t)] = f (t)u(t) + f (t)u (t), d d dt [u(t) · v (t)] = u (t) · v (t) + u(t) · v (t), dt [u(t) × v (t)] = u (t) × v (t) + u(t) × v (t), d dt [u(f (t))] = f (t)u (f (t)). (15) Integration: b b b b r(t) dt = a a f (t) dt, a b g (t) dt, a h(t) dt . (16) FTC: r(t) dt = R(t) a = R(b) − R(a), where R (t) = r(t). (17) b dx dy dz + + dt = |r (t)| dt. dt dt dt a a (18) The arclength for the segment of the curve measured from the point where t = a is b t 2 2 2 s(t) = a |r (u)| du. (19) Curvature κ = (20) dT ds = |T (t)| |r (t)| = |r (t)×r (t)| |r (t)|3 N (t) = T (t) |T (t)| , B (t) = T (t) × N (t). (21) Normal: N & B . Osculating: T & N . (22) v (t) = r (t), a(t) = v (t). (23) a = v T + κv 2 N 1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online