Chapter 3

# Chapter 3 - Chapter 3 Problem Solutions -y -y 3.1. (a) xy +...

This preview shows pages 1–6. Sign up to view the full content.

- 3.1 - Chapter 3 Problem Solutions 3.1. (a) xy + xy - + x - y - = x(y+y - ) + x - y - P4b = x . 1 + x - y - P5a = x + x - y - P2b = x + y - T7a (b) (x - z - + x - y + x - z + xy) __________________ = (x - z + x - z - + yx + yx - ) __________________ P3a,P3b = [x - (z+z - ) + y(x+x - )] ________________ P4b = (x - . 1 + y . 1) __________ P5a = (x - + y) ______ P2b = (x - ) __ y - T9a = xy - T5 (c) (x + y)(x - z - + z)(y - + xz) _______ = (x + y)(z + z - x - )(y - + xz) _______ P3a,P3b = (x + y)(z + x - )(y - + xz) _______ T7a = (x + y)(z + x - )y(xz) ___ T9a,T5 = (x + y)(z + x - )y(x - + z - ) T9b = (x + y)(x - + z)(x - + z - )y P3a,P3b = (x + y)(x - + zz - )y P4a = (x + y)(x - + 0)y P5b = (x + y)x - y P2a = x - y(x + y) P3b = x - [y(x + y)] T8b = x - [y(y + x)] P3a = x - y T6b

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
- 3.2 - 3.1. (continued) (d) (xy + yz + xz) _____________ = (xy) ___ (yz) ___ (xz) ___ T9a = (x - + y - )(y - + z - )(x - + z - ) T9b = (x - + y - )(x - + z - )(y - + z - ) P3b = (x - + y - z - )(y - + z - ) P4a = (x - + y - z - )y - + (x - + y - z - )z - P4b = y - (x - + y - z - ) + z - (x - + y - z - ) P3b = y - x - + y - y - z - + z - x - + z - y - z - P4b = x - y - + y - y - z - + x - z - + y - z - z - P3b = x - y - + y - z - + x - z - + y - z - T4b = x - y - + y - z - + y - z - + x - z - P3a = x - y - + y - z - + x - z - T4a (e) xy + yz + x - z = xy + yz . 1 + x - z P2b = xy + yz(x + x - ) + x - z P5a = xy + yzx + yzx - + x - z P4b = xyz + xy + x - zy + x - z P3a,P3b = xy(z + 1) + x - z(y + 1) P4b = xy . 1 + x - z . 1 T2a = xy + x - z P2b (f) (x + y)(x - + z) = (x + y)x - + (x + y)z P4b = x - (x + y) + z(x + y) P3b = x - x + x - y + zx + zy P4b = xx - + x - y + zx + zy P3b = 0 + x - y + zx + zy P5b = x - y + zx + zy P2a = x - y + zx + zy . 1 P2b = x - y + zx + zy(x + x - ) P5a = x - y + zx + zyx + zyx - P4b = x - yz + x - y + xzy + xz P3a,P3b = x - y(z + 1) + xz(y + 1) P4b = x - y . 1 + xz . 1 T2a = x - y + xz P2b
- 3.3 - 3.1. (continued) (g) (x + y)(y + z)(x + z) = [(x + y)y + (x + y)z](x + z) P4b = [y(x + y) + z(x + y)](x + z) P3b = (yx + yy + zx + zy)(x + z) P4b = (yx + y + zx + zy)(x + z) T4b = (y + yx + yz + zx)(x + z) P3a = (y + zx)(x + z) T6a = (y + zx)x + (y + zx)z P4b = x(y + zx) + z(y + zx) P3b = xy + xzx + zy + zzx P4b = xy + xxz + yz + xzz P3b = xy + xz + yz + xz T4b = xy + (xz + xz) + yz P3a = xy + xz + yz T4a (h) xy - + yz - + x - z = xy - . 1 + yz - . 1 + x - z . 1 P2b = xy - (z + z - ) + yz - (x + x - ) + x - z(y + y - ) P5a = xy - z + xy - z - + yz - x + yz - x - + x - zy + x - zy - P4b = x - yz + x - yz - + y - zx + y - zx - + xz - y + xz - y - P3a,P3b = x - y(z + z - ) + y - z(x + x - ) + xz - (y + y - ) P4b = x - y . 1 + y - z . 1 + xz - . 1 P5a = x - y + y - z + xz - P2b 3.2. To prove the cancellation law does not hold, use the method of contradiction. According to T7b, x(x - +y)=xy. Assuming the cancellation law holds, it follows that x - +y=y for all x and y in the Boolean algebra. Since x and y denote any elements in the Boolean algebra, let x=y. It then follows that y - +y=y. However, from P5a it is known that y must be 1 in this case and not any arbitrary element in the algebra. Thus, by contradiction, the cancellation law does not hold. By applying a dual argument starting with T7a, it can be shown that x+y=x+z does not imply y=z.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
- 3.4 - 3.3. (a) (b) (c) xyzx - z+xy (x - +y)(x+z) (x+y+z) ______ x - y - z - xy+yz+x - z xy+x - z 0 0 0 o 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 3.4. Let B={0,1,a} where a 0,1. By Postulate P5 of a Boolean algebra, the complement of the element a, i.e., a - , must exist and satisfy the relationships a+a - =1 and a . a - =0. Since there are just three elements in B, a - must be 0, 1, or a. Suppose a - =a, then a+a - =a+a=a. However, since a 1, Postulate P5a is not satisfied. Thus, a - a. Now suppose a - =1. Then a . a - =a . 1=a. However, since a 0, Postulate P5b is not satisfied. Finally, suppose a - =0. Then, a+a - =a+0=a. Again Postulate P5a is not satisfied since a 1. Therefore, a - does not exist and B cannot be a Boolean algebra.
- 3.5 - 3.5. (a) xyzx - z - x - +y x - +z - (x - +y)(x - +z - ) yz f 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 (b) - xy x - z xy+x - z (xy+x - z) ______ yz f 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/26/2010 for the course ENEE 244 taught by Professor Petrov during the Spring '08 term at Maryland.

### Page1 / 42

Chapter 3 - Chapter 3 Problem Solutions -y -y 3.1. (a) xy +...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online