{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Assignment 3

# Assignment 3 - f x y = x 2 y subject to the constraint x 2...

This preview shows pages 1–2. Sign up to view the full content.

Department of Mathematics MATHS 208 Assignment 3 Due:30 September 2008 Please hand in your assignment to the appropriate box outside the Student Resource Centre by 4 pm on the due date. SHOW ALL WORKING FOR CREDIT. 1. [ 6 marks ] (a) The equation x 3 - xy + 4 y 2 + xyz - z 3 = 11 defnes a ±unction z = f ( x, y ) implicitly. Use implicit di²erentiation to fnd the value ∂z ∂x when ( x, y, z ) = (1 , 2 , 2) . (b) I± f ( x, y, z ) = y 2 ze x + y - sin( xyz ) = 0, fnd ∂z ∂x and ∂y ∂z . 2. [ 5 marks ] Given w = x 2 y + y 2 z + z 2 x, veri±y that ∂w ∂x + ∂w ∂y + ∂w ∂z = ( x + y + z ) 2 . 3. [ 5 marks ] Given f ( x, y, z ) = 3 x 2 + xy - 2 y 2 - yz + z 2 , fnd the rate o± change o± f ( x, y, z ) at the point (1 , - 2 , - 1) in the direction o± the vector (2 , - 2 , - 1) . 4. [ 10 marks ] I± f ( x, y ) = x 4 + y 4 - 4 xy + 1 classi±y all relative extrema o± f . 5. [ 20 marks ] (a) Using the method o± Lagrange multipliers fnd the extreme values o±

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: f ( x, y ) = x 2 + y subject to the constraint x 2 + y 2 = 1. (b) Using the method o± Lagrange multipliers fnd the maximum value o± the ±unction f ( x, y, z ) = x + 2 y + 3 z on the curve o± intersection o± the plane x-y + z = 1 and the cylinder x 2 + y 2 = 1. 6. [ 6 marks ] Find the limits o± the ±ollowing sequences as n → ∞ i± (a) a n = 2 n + 5 5 n + 2 (b) a n = ln n e n (c) a n = n 1-e n 7. [ 8 marks ] Find the limits o± the ±ollowing sequences: (a) b (-1) n +1 √ n B ∞ n =1 (b) ± r n + 1 n ² ∞ n =1 1 (c) b 1-5 n 4 n 4 + 8 n 3 B ∞ n =1 (d) b sin n n B ∞ n =1 MATHS 208 Assignment 3 Page 2 of 2...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

Assignment 3 - f x y = x 2 y subject to the constraint x 2...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online