two-isometry-proofs - Two Proofs Involving Isometries...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Two Proofs Involving Isometries Theorem: The inverse of an isometry is an isometry. Proof: Suppose that a : P -+ P is an isometry. Let B = (1‘1 . Then, for any point X in P, [3(X) =X ifandonlyif a(X') = X, and, inthiscase, a°B(X) = X, since a°B(X) = a(B(X) ) = a(X ) = X. Let X and Y be any two points in the plane P. [Weneedtoshowthat ( [3(X) B(Y)) = (XY).] Let x'= B(X) andlet Y'= B(Y). Then, a(X') =X and a(Y') =Y. V Sincea isanisometry, (a(X')a(Y')) = X'Y . V ' Thus,XY = X'Y', so, X Y = XY. But, X'= B(X) andlet Y'= B(Y). Thus, (50‘) [3(Y)) = (XY) QED Problem: It is given that: __ ._ 6—) AB is the diameter of circle C( Z , ZB ) . M is the midpoint of ZB and line s = AB . Line t is perpendicular to line 5 at point M . Line t intersects C(Z , ZB)at points H and K. Line t ToProve: (1)Rt(Z)=B and Rt(B)=Z. (2)RS(H)=K and RS(K)=H. Lines (3) 115(3) = B and Rs° RS(H) = H. Proof: (1) Since line t is the perpendicular bisector of segment ZB- , R t ( Z) = B and Rt ( B ) = Z , by definition of a reflection about the mirror line t . 9—) (—) .— ..._.... (2) Since line s = AB and line t = HK , diamter AB is perpendicular to chord HK. By Theorem 4.5.4 ("If a diameter is perpendicular to a chord, then the diameter bisects it"), diameter AB bisects chord Thus, line 5 is the perpendicular bisector of R . Therefore, R s (H ) = K and R s ( K) = H , by definition of a reflection about the mrror line s . (3) Since B is a point on line s , R s ( B ) = B , by definition of a reflection about the mrror line 5 . By definition of composition of functions, R 5 ° R s (H ) = R s (R s ( H ) ) . Asshownin(2), RS(H) = K. Therefore, Rs° RS(H) = RS(RS(H)) = RS(K) = H. Therefore, RS° Rs(H) = H. QED ...
View Full Document

This note was uploaded on 11/02/2010 for the course MATH modern geo taught by Professor Shirley during the Spring '10 term at University of Texas at Austin.

Page1 / 2

two-isometry-proofs - Two Proofs Involving Isometries...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online