# hw6sol - Stat 309 1/2 Quoc Tran HW 6 Solutions 7 Find the...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Stat 309 1/2 Quoc Tran HW 6 Solutions 7. Find the joint and marginal densities corresponding to the cdf: F x , y = 1 − e − x 1 − e − y , x 0, y 0, 0, Ans: Joint density (joint pdf, jpdf): f X ,Y x , y = d 2 dxdy F X , Y x , y = d 2 dxdy 1 − e − x 1 − e − y = d dx 1 − e − x e − y = e − x e − y Marginal densities: Marginal density of X: f X x = ∫ ∞ f X ,Y x , y dy = ∫ ∞ e − x e − y dy = e − x ∫ ∞ e − y dy = e − x Marginal density of Y: f Y y = ∫ ∞ f X ,Y x , y dx = ∫ ∞ e − x e − y dx = e − y ∫ ∞ e − x dx = e − y 14. Suppose that f x , y = x e − x y 1 , x ∞ , y ∞ a. Find the marginal densities of X and Y. Are X and Y independent? b. Find the conditional densities of X and Y. Ans: a. Marginal densities: Marginal density of X: f X x = ∫ ∞ f x , y dy = ∫ ∞ xe − x y 1 dy = ∫ ∞ x e − xy e − x dy = e − x ∫ ∞ x e − xy dy = e − x Marginal density of Y: f Y...
View Full Document

## This note was uploaded on 11/05/2010 for the course BUS F370 taught by Professor Tom during the Spring '10 term at Indiana Institute of Technology.

### Page1 / 2

hw6sol - Stat 309 1/2 Quoc Tran HW 6 Solutions 7 Find the...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online