Linearite_locale_differentiel

Linearite_locale_differentiel - MTH1101 LIN ´ EARIT ´ E...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MTH1101: LIN ´ EARIT ´ E LOCALE ET DIFFERENTIELLE Les plans tangents Approximation du premier d´ egr´ e Diff´ erentiabilit´ e Diff´ erentielle R´ ef´ erences MTH1101: LIN ´ EARIT ´ E LOCALE ET DIFFERENTIELLE MOHAMMED.SADDOUNE ´ Ecole Polytechnique de Montr´ eal, d´ epartement de Math´ ematiques et G´ enie Industriel AUTOMNE 2009 MOHAMMED.SADDOUNE MTH1101: LIN ´ EARIT ´ E LOCALE ET DIFFERENTIELLE MTH1101: LIN ´ EARIT ´ E LOCALE ET DIFFERENTIELLE Les plans tangents Approximation du premier d´ egr´ e Diff´ erentiabilit´ e Diff´ erentielle R´ ef´ erences 1 Les plans tangents 2 Approximation du premier d´ egr´ e 3 Diff´ erentiabilit´ e 4 Diff´ erentielle 5 R´ ef´ erences MOHAMMED.SADDOUNE MTH1101: LIN ´ EARIT ´ E LOCALE ET DIFFERENTIELLE MTH1101: LIN ´ EARIT ´ E LOCALE ET DIFFERENTIELLE Les plans tangents Approximation du premier d´ egr´ e Diff´ erentiabilit´ e Diff´ erentielle R´ ef´ erences Rappel Soit f une fonction ` a une variable. Quel est la tangent de f autour du point a ? y = f ( a ) + f ( a )( x- a ) plans tangents d’une fonction ` a deux variables Soit f une fonction dont les d´ eriv´ ees partielles sont continues (f est diff´ erentiable). Une ´ equation du plan tangent ` a la surface z = f ( x , y ) au point P ( a , b , f ( a , b...
View Full Document

{[ snackBarMessage ]}

Page1 / 7

Linearite_locale_differentiel - MTH1101 LIN ´ EARIT ´ E...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online