144
Solutions to Exercises
14. (a) The characteristic polynomial is
x
2
+
6x
+
9 with repeated characteristic root
3. Hence,
an
=
C1
(_3)n
+
C2n( 3)n.
SO
C1
=
1,
3C1

3C2
=
4;
that is,
C1
=
1, C2
=
1/3. Thus,
an
=
(_3)n
+
In( 3)n
=
(3)n(1
+
n/3)
=
(n
+
3)(
_3)n1.
(b) Try
Pn
=
a
+
bn
+
cn
2
.
We obtain
a
+
bn
+
cn
2
=
6[a
+
b(n

1)
+
c(n

1)2]
9[a
+
b(n

2)
+
c(n

2)2]
+
n
2
+
3n
=
6[a

b
+
c
+
(b

2c)n
+
cn
2
]

9[a

2b
+
4c
+
(b

4c)n
+
cn
2
]
+
n
2
+
3n
=
15a
+
24b

42c
+
(15b
+
48c
+
3)n
+
(15c
+
l)n
2
.
Solving, we obtain
a
=
1
5
2
1
8'
b
=
~,
c
=
11
6
,
so
Pn
=
1
5
2
1
8
+
~n
+
1~n2.
From part (a),
qn
=
C1
(_3)n
+
C2n( _3)n,
so
Pn
+
qn
=
t2
1
8
+
~n
+
116n2
+
c1(3)n
+
c2n(3)n.
Using the initial conditions, we obtain
51
_
179
d
51
3
1
3
3
_
21
128
+
c1 
128
an
128
+
8"
+
16 
C1 
C2 

128 '
so
C1
=
1, C2
=
~.
Thus,
an
=
1
5
2
1
8
+
~n
+
l6 n
2
+
(3)n(1

~n).
(c)
This is the end of the preview. Sign up
to
access the rest of the document.
 Summer '10
 any
 Graph Theory, Characteristic polynomial, Recurrence relation, pn

Click to edit the document details