Unformatted text preview: = 0 and 1 f3x = 0; that is, 1 1 1 ± V( 1)2  4( 1)(1) 1 ± J5 1 ± J5 ;' ~ 2(1) 2 2 1 2 1+J5 ~(1 + J5) J5 1 2Thus, a 1 2 1J5 ~ ( 1 J5) J5 + 1 2 13 (c) Set 1 = _A_ + _B_ = (A+B) (Af3+ Ba )x. 1 x x 2 1 ax 1 f3x 1 x x 2 Thus, A + B = 1, Af3 + Ba = 0, so a a 1 A===a af3 J5 J5 13 131 1 B=;A=;J5 a =J5f3 (d) From the previous parts, it follows that 1 A B f(x) = 1x x2 = 1ax + 1f3x = A(l + ax + a 2 x 2 + . .. + anxn + . .. ) + B(l + f3x + f3 2 x 2 + . .. + f3 n x n + . .. ) and so an = A(a)n + B(f3)n = Jga n + 1 Jgf3 n + l , in agreement with the formula derived in Problem 22. The method of Section 5.3 seems preferable to the method of generating functions....
View
Full Document
 Summer '10
 any
 Graph Theory, Generating function, Ix, f3 J5 J5

Click to edit the document details