This preview shows page 1. Sign up to view the full content.
Unformatted text preview: . {seq( i, i=l .. n )}; #vertex set > v := vector(n); #v[l], v[2], ... , are the vertices > for i to n do v[i] := 1: od: > for i to n do indeg[i] . 0: od: #at the start of a canonical #labeling #initialize v > for i to n do #find original indegrees od: for j to n do indeg[i] .indeg[i] + A[j,i]: od: > t := 1: > found := 1: #found = 1 as long as we continue to find #vertices of a canonical labeling > while((found=l) and (t <= n)) do found := 0: i := 0: while(i < n) do i := i+1: od: if ((member(i,V)=true) and (indeg[i]=O)) then v[t] := i; fi: t := t+1: V := V minus {v[t]}: for j in V do #find indegrees for new V od: if (A[i,j]=l) then indeg[j] .indeg[j]  1: fi: found := 1:...
View Full
Document
 Summer '10
 any
 Graph Theory

Click to edit the document details