132B_1_HW_solutions

# 132B_1_HW_solutions - EE13ZB Professor Izhak Rubin Solution...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EE13ZB Professor Izhak Rubin Solution for Homework No. 1 Set No. 3 Problem 1 Set 9 =1-p. Problem 1.1 E(N) = 2n.(1—q)q" (1 ‘01:"1": III. a d (1 - 9): -¢"- .2}. a. Sinus the motion ad the diﬂ'emtisﬁon Ire interchangeable, we have EU?) = (1 - m; 21" II A H I In \II' "T II A 0- a 2’ plan. F. J ﬂ ‘1 II “I Problem 1.2 mm — 1)) 2 no: - 1) -(1 - m" (1 - 911' E "(n - 131“" III n-uﬁféZa‘ d“ 1 1.. 1 _ [ ale-1d! 1-; [1 1)»: (1-1? 24: 1-1)" ‘— Since Vin-{N} = HMN - 1)] + 51m - [smut we hm Val-{N} thlun 1.5 For Hats} 3 ID, 'l'l In.“ FNII} Prom-u 1.4 513.“) _2¢'_+L_._"_ {-ﬂ' 1-! {1-11’ 1 1-1) 1-? T = 39"“) Z r" -{1 - 111“ lull (1 — ﬂ Eta-'1‘ Since Var-(N) é E(N') - [E(N)]’, we have __ 9+9“ 9’ MN’ ‘ (Hm u-qv _ q _ (1-9)a _ 1.12.2 _ f. Problem2 ProblemZJ ELY) = [1:de(2) Using the integration by part, we heve E(X) = —ze""|3° + f“ e""dz 0 Problem 2.2 , on 50:3) = / emu) o = —:'e‘hlﬁ'+/«2se""dc o _ _.2_=_ -At on f. 1 -.\: .. A e lo 4- o Ae dz _ 2 — :5. Therefore, we he" mm = Jam-mm? 1 :5.- Problem 2.: in: Rep) 2 0. we hm Fx(e) E(e“x ) a f e"'Ae'“d: n A A+s 3 Prablmn 2.4 ' II .5 EIX‘] II. 13". tum if a. 'I'harefore. Valli)” = 1*. Problem 3 Marlin-d 1: P(X+Y=n) . 2P(x=n-MIY=m}-P{YIM} ﬁll = Erzxsn-m).r(r.m) all. "‘ i-l: ”I'll c-Ar}. = 2 {II-m}! I In! a E-(hxi‘ArIEAx +1”): i n! All-lag n! all (n—m]1m|'(Ax+A~yP _ run-1r)“: +lrr i( I )l A? III 1 Jay u-nu a: .... u- may] [Hm] I g'(h+hr}§AI-+AYE‘ n1 mmmnﬁﬁhx+vhmmmﬁnﬁﬁwmlx+lp Mlthod I: Iﬂletludnuldnmmmmdthmhﬂﬂummhm radian thIII-df.mﬂvnly. Inn-”(:1 mmmmhncﬁadthpnhhﬂiwm- fumhnnfurthn-du-I'Iﬁlbhx-lvl’. HXnd Y arc-minded]: independm. ﬂ1+r(t}- "(ﬂ-"(1). hﬁthhmﬂunﬁﬁkIuﬂhnm ”(3} = if" * w -1“ 0' dug" n = a El! L13! ‘ “II 4 ' t-lxﬂ—I]. ram-n1 arr-[*1 Thnfou. ”wit! = ”(ti-mar) = l-{lx+HKI—l}‘ Ninth: uniquena- um: yum-Ilia; mm. we conclude In: the random variIth+Y bu the Poi-an dinirhutiun with pal-Imam A: + Jay. Problem 4 Lit Ndmtelhe numhcrofcmmpudq. magma. mlol'm Ipantbythlithmhnmfuti=ﬂ.1,u-. Snip:ﬂXﬂfudli=ﬂ.1.---.Thm1thlwtﬂmufthe mmtbycuﬂmlpudul’ilmn-nd. N Y=£Xp The mind “In: a! Y is obtained u fallen: 511"] N FIEXIJ N = \$12 x; I”)! N 3:23:an til N HEM #EW} annual-u}. Problem 5 Dim-m radon: MM-Xud? minW,if|ﬂéonlyHP{X=m,Y =n]. FEE-mJ-Pﬂ’lnl. mmpmmwmrummmmmmmx. II It 1| Pfx=mj = iPl'X =m,Y=n) n-ﬂ ﬂ E'Tl'l'll". Em G-d‘m at l—laﬂ-ﬂ = ml 3;, (n-m)! e—‘4II- III] I .— — hm=oull for n = 0.1. independent. - - -'. The marginal probability mass function for the random variable Y, " -74m3n-m C Em m=0 5—2?" ”(3. )ET [1"1'” ewfrm n! PU’ = n) Since P(X = m. Y = n) 1: P(X = m) - P(Y = n). the rmdom within X and ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern