能源材料-3

能源æ...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (Energy Materials) -3 3C 3C ` ` High energy Accumulator Li-polymer Li-ion (prismatic ) Li-ion(c) NiMH MLC with built-in RLC network Integrated Micro Module (LCD,OLED) NiCd R L C network Built-in OLED 30”-60”TFT LCD Build-up Multi-layer 15“-30” TFT LCD Two Signal Layer 1980 1990 2000 OLED 2005 ) Power Tool Applications Key Components Golf Car NB/PC Mobile Phone LES Prismatic Cell Key Materials High-Energy Density Lithium Battery EB Bluetooth Cylindrical Cell Power Cell MD Player Polymer Cell ES PDA Power Chairs EV/HEV Camcorder Enabling Li Battery Technology for Next Generation Electric Vehicle HONDA ASIMO TOYOTA Yamaha EC-02 Mitsubishi EV Smart Watch Function IrDA Port Microphone Roller Wheel Battery B/W LCD 96x120 dot Touch Panel Speaker Accessory Card Cradle Interface ES/EB/EV PHEV/HEV/FCEV UPS LED OLPC 3C NB/PC, PDA, Cellular Phone, DSC, Camcorder, (Portable Audio, Bluetooth, Game) IC RFID Lithium-Ion Battery Cathode: Discharge LiMeO2 - xe- CHARGE DISCHARGE Li1-xMeO2 + xLi+ Anode: C + xLi+ + xe- Charge CHARGE DISCHARGE CLix Anode (CLix) Cathode (LiMexOy) Negative terminal •LiCoO2 , LiMn2O4 •LiCoNiO2, LiFePO4 Separator Aluminum can Positive terminal charge Separator Li+ Li+ Carbon Electrolyte discharge Li1-XMXO2(M=Co,Ni,Mn) 1a 1b 10 1b 1a 9 2b 2a 2b Li 9 2a Li 3 3 Li 8 Li 4 7 5 5 4 Li+ Li+ ) 6 Li+ ( 7 Li+ 6 ( IIT, 2007Q1 Cleaners IIT, 2007Q1 Sanitary E-Bicycle E-Scooter (Yano Research Institute) 2015 Worldwide demand for: • ----------- > 350 ( ) :38000 > 115 K Tons(5800 > 110 K Tons (1600 >1270 M m2 (4000 >122 K Tons (2200 * 60%= 22300 ) ) ) ) Source: Yano Research Institute( 2007Q1 ) LIB cell shipment (Million cells/CY) 2200 2000 1800 1600 276 1400 132 1200 97 1000 800 600 400 200 0 57 (2006) 504 309 200 93 173 02CY Source: IIT 200 374 444 146 161 185 210 221 243 244 267 03CY 04CY 05CY 06CY Lami. others LIB others Lishen E-One SDI LGC BYD M axell NEC SGS Sanyo M BI Toshiba Sony Production cost and others(US$/cell) 2.0 100% Share by LIB cell volume 90% 80% 70% 60% China/Others Korea JP@out JP@JP 50% 40% 30% 20% 10% Source: IIT (2006) 06CY 05CY 04CY 03CY 02CY 01CY 00CY 0% 1.8 1.6 1.4 Operating profit SGA Labor R&D Depreciation Material 1.2 1.0 0.8 0.6 0.4 0.2 0.0 JP Korea Lishen BYD LiFePO4 LiMn2O4 NC NMC LiCoO2 OMG Sumitomo Osaka Cement Nippon Chemical Industrial Mitsui Zosen Chemetal Mitsui Mining Nikki Chemical Nichia Corp. Nippon Denko JFE Mineral Sumitomo Metal Mining Seimi Chemical Tanaka Chemical Seimi Chemical Mitsubishi Chemical Nichia Corp. Tanaka Chemical Cell Maker In-house Chinese Local UMEX Canada FMC Lithium Umicore Korea Sumitomo Metal Mining Toda Industrial Seido Chemical Seimi Chemical Nippon Chemical Industrial Nichia Corp. Sanyo Sony MBI SDI LGC BYD Lishen SGS NEC Maxell E-One Others 0 100 200 300 400 Cathode material shipment(Ton/month) Source: IIT (2006) 500 O th e rs S a ny o S o ny S ha ns ha n Te c h M BI S h e n zh e n B T R SDI K a n s a i N e ts u K a g a k u LG C BY D M i ts u i M i n i n g L is h e n M i ts u b i s h i C h e m i c a l SG S J F E C he m ic a l NE C M a x e ll N i p p o n C a rb o n E -O ne O s a k a G a s C he m ic a l O the rs S u m i to m o M e ta l O the rs H i ta c h i C h e m i c a l 0 50 100 150 200 250 300 350 400 A n o d e G ra p h ite (T o n /M ) Source: IIT (2006) DSM S anyo S ony E nte k M BI SDI SK LG C BY D Ub e Ind ustrie s Lishen SG S To ne n C he m ica l Na su NE C M axell E -O ne C e lg a rd O thers A sa hi K a se i C he m ica ls 0 1000 2000 3000 4000 S e pa ra to r(1 0 0 0 m2 /M ) Source: IIT (2006) 5000 E -O ne C a na d a inho use S anyo S ony B YD in-ho use M BI C hine se o the rs SDI Zha ng jia g a ng G uo ta i Ro ng hua LG C BY D K ishid a C he m ica l Lishen SG S M itsui C he m ica l NE C To m iya m a P ure C he m ica ls M axell M itsub ishi C he m ica l E -O ne O thers C hie l O thers Ub e Ind ustrie s 0 50 100 150 Fo rm ulated E lectro lyte(T o n/M ) Source: IIT (2006) 200 Battery Industry Structure in Taiwan Upstream Industry: Cathode Material • • • • • • Midstream Industry: Anode Material (Comax) • (LICO) • (Changs) • (TAK) (Clifford) Separator Electrolyte Battery Components Additives (CSCC) • • • (Coin Chemical) (Formosa Plastic) (A-Power) (Taimatsu) • • • • • • Facility (Hon Chuan) (CIPC) • • • (Golden Copper) • (CFTC) • Li-Ion& Li Polymer Battery Battery Maker Battery Pack Maker Downstream Industry: NB/PC Maker • • • • • (Sinbon) (Foxlink) • (SMP) (DynaPack) • (Welldone) PDA (Solomon) (Farlight) • (Formosa Electric) • (GLW) (Perfect Source) ) • • • • (Unitronic) (Good Will) Ni-MH/Ni-Zn Cell (Ultralife, Taiwan) • (Pihsiang Energytech) • (E-ONE Moli) • (Power Source Energy) • • • • • • (AMI) (Acer) (Arima) (Quanta) (Compal) (Asus) (Twin Head) (Inventec) (FIC) (SYNergy) ( EXA Energy) (Amita) • • • • (NEXcell) (High Energy Battery) (Century Zinctec Electric) DSC (Acer) (Mitac) Cellular Phone • • • • • • • • • (BenQ) (BenQ) (Altek) (Abico) (Mustek) (Foxlink) Fuel Cell • • • (APFCT) (SMP) EB/ES • (Giant) • (Merida) • (Sanyang) • (Yamaha) • (Pihsiang) (Dbtel) (Compal) (Giya) (OKWAP) (Mitac) (Palmax) / 2006 Cell ( Cell ( ) ) Material Cost Ratio of ALB Cell (363562 Type) (reversible capacity) Physical Properties of Various Cathode Materials C athodes LixCoO 2 LixNiO 2 LixMn 2O 4 LixNi0.8Co 0.2O 2 LixFePO 4 Working voltage (V) 3 .7 3.55 3.8 3.65 3.4 Density (g/cm 3) 5.0 4.8 4.2 4.85 3.6 Theoretical capacity (mAh/g ) 273.8 274.5 148 274 169 Structure L ayer 2 L ayer S pinel L ayer 2 Olivine Conductivity (S/cm) 10 -3 10 -4 2*10 -5 10 -4 10 -6 Diffusivity (c m 2/s) 5*10 -8 2*10 -7 1.2*10 -11 3 .5 *10 -8 5 *10 -15 211 206 355 208 275 147 o DSC Peak Temp.( C) DSC exothermic heat (J/g) 120 >500 80~100 1 00(surface treatment ) > 350(none ) Li extraction amount X=0.5~0.55 X=0 .8 X=0.9 X=0.75 X=0.97 Specific capacity (mAh/g ) 1 4 0 ~145 190~ 2 00 110~ 120 175~190 1 40~155 Power density (Wh/kg) 536 710 456 6 94 527 Cost (US/Kg) 3 0~ 50 --- 15 ~30 25 ~ 50 1 8~60 Structure of Cathodes Materials (reversible capacity) (irreversible capacity) Graphite Performance Capacity Irreversible Loss Working Voltage Cycle Life Low Temp. Property Compatibility PC Price with Hard Carbon Low-Temp Carbon High-Capacity Anode Material---- Carbon-coated Silicon •Doping is homogeneous(Li1.7Si, Li2.4Si by capacity control) •Increase Ion Conductivity •EC reaction occurs at the surface of carbon layer(Li solvation) Si Carbon---by CVD High-Capacity Anode Material ----Li3-xCoxN 1 .6 anode capacity (mAh/g) 0 150 300 450 600 750 900 1050 4.40 4.20 Volt a ge (V) Voltage (V) 0 .0 0 200 400 600 Ca p a c it y ( m Ah / g ) Li/LixCoyN Half Cell 800 1000 3.40 3.40 3.20 3.20 3.00 2.80 2.60 2.40 C y c le 3 0 .4 3.60 2.60 C y c le 2 3.60 2.80 C y c le 1 3.80 3.00 LCN 1 0 4.00 3.80 0 .8 4.20 4.00 1 .2 4.40 2.40 0 40 80 120 160 200 Cathode capacity (mAh/g) LixCoyN/LiCoNiO2 Slim Battery 240 High Energy Density Slim Battery(LixCoyN/LiNiCoO2) (LixCoyN) >800 mAh/g 160Wh/Kg) 100 900 180 160 700 140 600 120 500 100 400 80 300 60 40 200 20 100 0 0 0 100 200 cycle number 90 800 Capacity:605mAh, Energy :182 Wh/Kg 300 anode capacity (mAh/g) capacity (%) ( 200 Cathode capacity (mAh/g) (LixCoyN/LiNiCoO2) 3.7 Volt 180Wh/Kg >300 80 70 60 50 40 30 20 10 0 The Electrochemical Properties of Li4/3Ti5/3O4 Material V oltage, Vvs L i C0 /1 C0 /1 C /5 0 .8 e . L inL 4/3+xT5/3O qi i i4 S e ific c p c , m h p c a a a ity A g -1 1 .0 0 .6 C /2 0 .4 ca e h rg d h rg isc a e d h rg a C isc a e t c a ea C h rg t /2 0 .2 0 .0 -1 S ecific cap p acity, m h Ag cc s y le LiPF 6 LiPF 6 LiPF 6 LiPF 6 LiPF 6 LiPF 6 LiPF 6 (Decomposition voltage)V EC/EMC 4.5 EC/DEC 4.5 EC/DEC/DMC 4.65 DEC/EA >5.0 EC/EA 4.5 EC/DEC/EA 4.65 EC/DEC/PC 4.50 Electrylate:EC/DEC/LiPF6/50/50/1M Sweep rate:0.01mv/sec Sweep 1 Sweep 2 Sweep 3 Sweep 4 Current(mAh) 0.10 0.05 3 1 0.00 4 2 -0.05 3 .20 3.60 4.00 4.40 Potential vs. Li/Li+ 4.80 Additive Agents for Electrolyte Additive agents Vinylene carbonate Function SEI formation Propane sulton SEI formation Oxycarboxylic acid SEI formation Cyclohexyl benzene Gas generator Methyl cinnamate Isoprene Biphenyl carbona te SEI formation Gas generator Battery effect Improve storage stability, cycle life (for anode) Improve storage stability, cycle life (for anode) Improve storage stability, cycle life (for anode) Overcharge proof (for cathode) Improve storage stability, cycle life (for anode) Overcharge proof (for cathode) Assignee Sanyo Sanyo Matsushita Sanyo&UBE NEC Sanyo&UBE Functional Electrolyte (I) Mechanism: Stable SEI formation on anode surface by adding 1-5 % of vinylene carbonate or propane sulton Effect: Improvement of cycle life, storage stability (especially under high temp.), swelling prevention Functional Electrolyte (II) Mechanism: Additive agent which has hydrogen atom bonded to tertiary carbon atom is Electrochemically active and generates H2 gas at 4.5 V Effect: overcharging H2 gas evolution pressure increase CID operation disconnection of cell circuit TRI-001 TRI-311 TRI-013 without TRI with TRI-013 with TRI-311 1 M LiPF6 in EC-DMC(1:1) With 5 wt.% TRI-311 With 5 wt.% TRI-013 With 5 wt.% TRI-001 15.3 4.9 7.2 5.7 5.1 4.2 1.2 2.5 213 220 210 200 248 280 203 263 Fig. 2. Thermal behavior of electrolytes containing a strip of l ithium in 1M LiPF6, EC-DMC, 5 wt.% TRI-013 or 5 wt.% TRI-311. 1 M LiPF6 in EC-DMC(1:1) With 5 wt.% TRI-311 With 5 wt.% TRI-013 With 5 wt.% TRI-001 J. of Power Sources, 161 (2006) 1341. 177 203 300 240 without TRI with TRI-001 1 Additives for Stabilizing LiPF6-Base Electrolytes Against Thermal Decomposition LiPF6 EC DMC DEC A 1.0 M solution of LiPF6 in EC/DEC/EMC mixed by weight 1/1/1 (standard electrolyte) pyridine HMPA[2] HMOPA[1] Addition of low concentrations (3-12 %) pyridine: PF5 complex NMR [1] hexamethoxycyclotriphosphazene, [N=P(OCH3)2]3 [2] hexamethylphosphoramide, (C2H6N)3OP Cell performance HMPA: PF5 complex 1 M LiPF6 in 1:1:1 EC/DEC/EMC (1/1/1) 3 % pyridine 10 % HOMPA EMC is believed to occur from the rearrangement of DMC and DEC via a PF 5 or OPF3 catalyzed transesterification, and EC is kinetically more stable at elevated temperature than DEC, DMC, or EMC. 3 % HMOPA 12 % HMPA 8000 J. of Electrochem. Soc., 152 (2005) A1361. 9000 -1 1. 1. 2. 2. , 2. -2 : Shut down PP/PE/PP 16% 2% 47% 35% ) (ALB) Al Laminated Film Negative Tab (Ni) Electrode Coil / Electrolyte (Positive/Separator/Negative) Positive Tab (Al) 25 m Nylon Adhesive Polyester-polyurethane 40 m AL Adhesive polyurethane 40 or 80 m Polypropylene AL Laminate film 1085-H18 185~195 950/m2 P Conductor Insulation Per Unit: 1.Tap PVC Film SAMBO( 0.4* 300m 2.Tap DMP Film 0.4* 1m ) 6750 145 10/unit W.W. Market Demand Amounts and Values of Al-Package Film and TAB-Lead 12520 10240 8320 6810 6700 5530 5400 4040 3260 2360 1 560 2680 2180 Source: ITRI/MCL Lithium-Ion Battery Lab. (200711) 4450 3590 8320 Source: Yano Research Institute (2004) ES/EB Plug-in EV HEV UPS OLPC 3C NB/PC, PDA, Cellular Phone, DSC, Camcorder, (Portable Audio, Bluetooth, Game) IC RFID The Power Requirement for 3C Products Li Battery NB/PC Cellular Phone 240 Wh/Kg(500 Wh/L) •Digital TV •X GHz CPU •Memory increase PX (75W) 170 Wh/Kg(380 Wh/L) P4 35W •DVD-RW 2002 2008 4G (7.2 W) 2.5 G (3.6 W) •Personal /video •Multimedia •Location services •Advanced display 6W(color) 12 W •Large display •Memory increase Year PDA •Full motion video •High resolution Energy Density Demands for Cellular Phones Power consumption is always higher than battery energy!!! High-Capacity Nano Lithium Battery Materials 4G requirement ??? 500 Energy Density(Wh/l) 450 3G requirement GSM !!! 400 GSM LE 2.5G requirement 4.1 V to 4.2 V Digital TV on Cellular Phones 350 WCDMA 300 Visualphone 250 Pr LIB/ Li Polymer 200 Pr NiMH 2G requirement 150 1998 2000 2002 2004 2006 2008 Low Working-Voltage Li Batteries for New Applications LiMn2O4 3.7~ 3.8V LiCoO2 0.3~0.4 V 3.4~ 3.6V LiNiCoO2 1.8 ~2.0V 1992~2005 LiFePO4 LiFePO4 LTO 2006 2007 ~ LiMn2O4 LiCoO2 LixTiyOz MCMB Silicon Preventing Methods for Graphite Exfoliation (1) Active Material Particles: Covering with a thin nano-coating layer on the graphite surface (2) Electrolyte: Select an appropriate solvent, PC is no compatible (3) Electronic conductivity: Keep high and homogeneous conductivity over the whole electrode area Composite Graphite ---- Physical Property(II) Physical Properties SEM Particl e True density (g/cc) Tap density (g/cc) d002 (Å) Lc (nm) Natural Graphite 20~ 25 m 2.27 0.6874 3.358 111 Composite Graphite 20~ 25 m 2.24 1.12 3.363 39.8 Composite Graphite ---- Physical Property(III) Conductivity: •Graphite powder:31.25 S/cm, Composite graphite: 58.8 S/cm •Graphite Electrode resistance: 0.125 m , Composite graphite resistance: 0.063 m 0.4 0.25 0.2 0.15 0.2 0.1 0.1 0.05 0 0 0 1000 2000 T e m p e r a tu r e (C ) 3000 Resistance (mOhm) Adhesive f orce (kg) 0.3 Composite Graphite ---- Electrochemical Property(II) Capacity Test: Cycling Test: 2.00 400 Li/C half cell 1.80 350 1.60 300 capacitly (mAh/g) Voltage (V) 1.40 1.20 1.00 0.80 0.60 250 200 composited graphite 150 100 0.40 graphite 50 0.20 0 0.00 0 50 100 150 200 250 300 350 400 capacity (mAh/g) 0 10 20 30 40 cycle number 50 60 70 Nano-SnO2 coating layer (150~200 nm) : , , carbon , TEM image of SnO2 polycrystalline phases (BF-15SP) / Coating Tin Oxide 90% 10% Cycle Life -1 Sn/BF-15SP CS02 BF-15SP BF73 Fit 2: Running Average Good cycle life at PC-based electrolyte : 500 • 450 420 mAh/g, 116 mAh/g 380 mAh/g, 44 mAh/g • ( • • • >400 mAh/g :320 mAh/g) <45 mAh/g >200Wh/Kg < 20 (US$/Kg) 350 Capacity (mAh/g) • SnO2/C 400 Sn/C 300 250 C(graphite) 200 150 100 Final cycle capacity HH202 357.6 mAh/g CS02 344.8 mAh/g BF73 235.8 mAh/g 50 0 0 20 40 60 Cycle number 80 100 : SnO2/C composite~28 % Sn/C composite~ 20% : Electrode graphite SnO2/graphite Sn/graphite Process Qirr (mAh/g) ----56 sol-gel(A) 116 (A)+reduction(HT) 44 -2 , , Cyclic Voltammetry (CV): (SnO2) 200 , 1st scan Current (mA/g) 100 : 500 (a) 5th scan 0 SnO2 -100 SnO2 /C 400 -200 Sn/C 300 (b) 5th scan 100 Graphite Current (mA/g) • (CV) Li2O Capacity (mAh/g) • 200 1st scan 0 Sn -100 100 -200 0 0.0 0.4 0.8 1.2 C-rate 1.6 2.0 0.0 0.5 1.0 1.5 Potential (V vs. Li/Li ) 2.0 Mechanism 2.0 Potential (V vs. Li/Li ) a : ~1.1 V, Li/C solid-electrolyte interphase (SEI) formation b : ~0.5 V, graphite sheet exfoliation c : ~0.8 V, Li2O formation d Original Graphite : Li/Sn SEI formation + 1.0 a b 0.0 Sn/C 0 100 200 300 400 500 Capacity (mAh/g) 2.0 Potential (V vs. Li/Li ) SnO2/C + PC + graphite c 1.0 d PC + Sn/SnO2 0.0 0 100 200 300 Capacity (mAh/g) 400 500 (graphite sheet exfoliation) --unstable SEI film -( ) ---stable Li2O film -( ) -- AC impedance Test for Nano-Composite Anode Material After cycling Electrolyte/electrode resistance (Ω cm2) 60 Film resistance (Ω cm2) Charge transfer resistance (Ω cm2) Original carbon SnO 2 /C composite Sn/C composite Formation 3.2 15.7 1.8 3 cycles 4.0 30.7 2.8 10 cycles 50 Original Graphite electrode 4.8 30.5 2.5 -lm Z" ( cm2 ) 40 10 mHz 1 30 increasing Sn02/C composite electrode 10 Formation 10 78.5 10.1 4.2 10.8 3.1 10 cycles 100 k 3.5 3 cycles 20 4.2 1 0 .1 3.3 decreasing Sn/C composite electrode 0 0 10 20 30 40 50 70 R1 R2 Rs Q3 3.5 32.3 3.8 4.9 12.0 3.8 10 cycles 80 Formation 3 cycles 60 re Z' ( cm2 ) 4.5 11.9 2.3 Q4 Q1 Q2 decreasing Equivalent circuits Rs : electrolyte/electrode resistance R1 : film resistance R2 : charge-transfer resistance Q1, Q2, and Q3:constant phase elements (CPEs) Ultra-thin Li2O film formation --stable/resistive (with PC) --thin-film (~0.1-0.3 m) --good ionic conductivity Electrochemical Performance of Graphite/ Nano Ag Anode Material(I) Origin Graphite Nano Ag Ag/Graphite C/Ag/Graphite 3 O r ig in E v s . L i/L i+ (V ) A g /G C /A g /G 2 1 0 0 100 200 300 C a p a c ity (m A h /g ) 400 500 Electrochemical Performance of Graphite/ Nano Ag Anode Material(II) 500 Discharge capacity (mAh/g) 400 300 200 Origin Ag/G 100 C/Ag/G 0 0 0.4 0.8 1.2 1.6 Current density (mA/cm2) •C/Ag/Graphite Material Results: 1. Over 20% of capacity enhancement 2. High rate capability 3. Good cycle life performance Composite Nanofibers for Thin-Film Battery Material •Developing the high-capacity, high-rate capability anode materials for Thin-Film battery Synthesis: Template Method 4 Li+ + 4 e– + SnO2 20 0 0 2 Li2O + Sn 25 mm 10 0 0 1 mAh Thickness= 300 m C u r r e n t (m A /g ) Research Target: 0 -1 00 0 High irreversible capacity loss -2 00 0 -3 00 0 0 1 2 P oten tial (V v s. L i/L i ) *CV result of SnO2 nanofiber electrode Tech. Advantages: (vs. Martin group) •Precise control of Nanofiber diameter •Low cost for template removal (Thermal decomposition substitute oxygen plasma) Results: •High reversible capacity SnO2 Nanofiber High reversible capacity (>740 mAh/g, commercial carbon:340 mAh/g) •High charge & discharge rate (>10 C rate,commercial carbon C&D rate: 2C) Nominal pore diameter of template: 50 nm 3 Electrochemical Performance of Composite Nanofibers 3.0 SnO2 Ch:929 mAh/g Reduce Irreversible Capacity Loss SnO2 Dis:591 mAh/g SnO2+Carbon Ch:872 mAh/g SnO2+Carbon Dis:741 mAh/g 2.0 SnO 2 Voltage (V) (from 328 to 131 mAh/g) SnO 2 +C Discharge 1.0 Charge 0.0 0 * SEM image of carbon nanotube (chemical method) Increase Discharge Rate (from 5C to 10C) 800 200 400 600 Capacity (mAh/g) 800 1000 1.45C SnO2 SnO2+Carbon Capacity (mAh/g) 600 2.86C 7.14C 400 14.49C 200 “ ” * SEM image of SnO2/Carbon composite nanofiber Patent Applied 10C 5C 0 0 1 2 3456789 Current density (mA/cm2 ) 10 11 12 Thin Film Battery Applications •IC Card •Memory Backup •Medical Device •Power of Smart Wafer Thin Film Battery (<300 m) 1~35mAh M2A Capsule Endoscopy 26 mm 11 mm Source:Given Co. web site Weight: 4 g Source: Nano Markets (2007 Oct . Report) (RFID) E-Book E-Paper Flexible Display Implantable Device Hearing Aids Drug Delivery System Glucose Monitors Bio Sensor Wearable Body Sensor Wireless Emergency Call Stimulator Wireless Medical Management System ) Poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (nitroxide radical) Battery Incorporated on Smart Wafer for Microelectronics Voltage regulator LED Microprocessor Thermistor •Thermal sensing by Thermistor. •Battery is needed to power Thin Film -Voltage regulator Battery -Sensing function -Microprocessor (National LM61CIM3) -LED Paper Battery Applications • ( ) •MEMS Device anode solid state electrolyte cathode current collector insulating substrate Paper Battery(<20 m) 10 Ah~ 100 Ah ...
View Full Document

Ask a homework question - tutors are online