能源材料-1

能源材料-1...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (Energy Materials) Source German Advisory Council on Global Change, 2003 27~30 27 (Microgrid) • • • (2010~2020) 3 650 ( ) 700 10% 12% 2020 2020 Energy Materials & Applications Solar thermal energy Solar cells Energy Conversion Energy Materials and Applications Fuel cells Thermoelectricity Bio energy Rechargeable batteries Energy Storage Hydrogen storage Super capacitors Flow Battery Energy Saving High-Efficient LED Light Combustion Energy Saving Materials : (Take home test ) : (1)J.O. Besenhard:” Handbook of Battery Materials”, John Wiley & Sons. (2)A.J. Bard: ”Electrochemical method” , John Wiley & Sons. ( ) Five Dimensions of the “Old” Electricity Value Chain Six Dimensions of the “New” Electricity Value Chain Functions : • • • • • Energy Storage System To provide electric power for utility and mobility uses To improve the efficiency and reliability of the electric utilit y system To accelerate adoption of renewable energy technologies To correct voltage sags, flicker, and surges To be used as an Uninterruptible Power Supply (UPS) Transportation EV Renewable energy / wind farm Energy Storage 3C / Power tool Solar panel / household Power Grid Needs for Energy Storage Requirement Usage Scenario Capacity 5 kW 30 kW < 10 kW Duration Life (Cycles) 10 yrs. (>5,000) 5~10 yrs. (>2,000) >10 yrs. (~10,000) >10 yrs. (~10,000) > 20 yrs. Objective/ Benefit Electrified transportation/clean city Backup & bridging power/pollution control Bridging & energy management/sustainability Energy management /sustainability Energy management /sustainability Transportation Mobility On-site & Isolated Community Wind Farm 1 Hour Hours > 500 kW > 50 MW Mins.~Hrs. Mins.~Hrs. Region > GW Hours Types of Energy Storage Systems Energy Storage Types • Electrical: Capacitor & Supercapacitor, Superconducting Magnetic Energy Storage (SMES) • Electro-chemical: Pb-acid, NiCd Batteries, Advanced Batteries, Flow Batteries, NaS Battery • Chemical: Electrolyser/H2/FC or ICE • Mechanical: Pumped Hydro, Compressed air energy storage (CAES), Flywheels • Thermal: Hot water, Steam, Ceramics, Molten salt Features • Low cost • Cycle life and Efficiency • Energy density, Power density Pumped hydro CAES High Tem. Batteries Flow batteries H2 storage Supercapacitors SMES Flywheels Batteries Power Quality sec./min. scale Energy Management hour scale Portable Power Power Hungry 10,500W-hr Portable Electronics Yearly Energy Usage 3,500W-hr On Body Energy 10W-hr 1980 500W-hr 1990 2000 2010 Source 1.Motorola solid state research center 2.DOCOMO •MEMS •Medical •IC Card Film Battery ALB/PLB Li-ion Ni-MH Ni-Cd 1960 1970 1980 1990 2000 2005 Electric Power Conversion in Electrochemistry Electrolysis / Power consumption Electric Power Chemical Reactions Electrochemical battery / Power generation V o l t a ’ s b a t t e r y ( 1 8 0 0 ) A l e s s a n d r o V o l t a 1 7 4 5 - 1 8 2 7 P a p e r m o i s t u r i z e d w i t h N a C l s o l u t i o n C u Z n D i f f e r e n c e B e t w e e n E l e c t r o l y s i s a n d B a t t e r y B E l e c t r o l y s i s a t t e r y S S y s t e m c o n s u m e s e n e r g y y s t e m r e l e a s e s e n e r g y G G > 0 < 0 A A N O D E + N O D E - ( o x i d a t i o n p r o c e s s ) ( o x i d a t i o n p r o c e s s ) ( D i s c h a r g e ) C C A T H O D E - A T H O D E + ( r e d u c t i o n p r o c e s s ) ( r e d u c t i o n p r o c e s s ) C a t h o d e : C A T H O D E + C H A R G E ( + o x i d a t i o n p r o c e s s ) L i M e O - x e L i M e O + x L i 2 1 - x 2 D I S C H A R G E ( C h a r g e ) A n o d e : A N O D E - C H A R G E ( + - r e d u c t i o n p r o c e s s ) C + x L i + x e C L i x D I S C H A R G E Principles of Power Generation for Electrochemical Systems Me2n+ - ne- = Me20 Me20 - ne- = Me2n+ CATHODE Me1 ANODE Diaphragm or Membrane Me2 n + 2 - M e S 1 O n + 2 - 4 M e S 2 O 4 Primary batteries Leclanché’s battery (1866) Georges Leclanché (1839-1882) Modern ZincManganese battery Anode: Zn Zn2+ + 2e2MnOOH + 2OH- Cathode: 2MnO2 + 2H2O +2e- Seal Zn-container MnO2 paste (cathode) Carbon rod NH4OH electrolyte Gas space Zn-container MnO2 paste (cathode) Carbon rod Electrolyte: Zn2+ 2NH4Cl +2OH- Zn(NH3)Cl2 + 2H2O 2MnO2 + Zn + 2NH4Cl 2MnOOH + Zn(NH3)Cl2 Gel electrolyte Primary batteries Zinc-Manganese alkaline battery MnO2 paste (cathode) Gel electrolyte Porous Zn (anode) Anode: Zn + 2OH - 2e Zn(OH)2 Cathode: MnO2 + H2O +1e- MnOOH + OHaaaaaaaaa MnOOH + H2O +e- Mn(OH)2 + OH- Zinc-Air battery Anode: Zn + 2OH- - 2eZn(OH)2 Zn(OH)2 Cathode: 1/2 O2 + H2O + 2e- Secondary (rechargeable) batteries E=2.06 V Lead acid battery Lead--acid battery Pb PbO2 Safety valve 36% H2SO4 Pb+(2H++SO42-)-2edischarge charge PbSO4+ 2H+ PbO2+(2H++SO42-)+2H++2ePbSO4+H2O discharge charge PbSO4 PbSO4 Lead paste in Pb-mesh (anode) Lead dioxide paste in Pb-mesh (cathode) Porous separator PbO2 + Pb + H2SO4 discharge 2PbSO4 + 2H2O Secondary (rechargeable) batteries Nickel-Metal Hydride battery Cathode: Ni(OH)2 + OHAnode: M+ H2O + eCHARGE DISCHARGE CHARGE DISCHARGE NiOOH + H2O - eM-H + OH- Picture from: T. Takamura / Solid State Ionics 152-153(2002)19 Lithium-Ion Battery Discharge Cathode: LiMeO2 - xeAnode: Charge Anode (CLix) Cathode (LiMexOy) •LiCoO2 , LiMn2O4 •LiCoNiO2, LiFePO4 Negative terminal CHARGE DISCHARGE Li1-xMeO2 + xLi+ C + xLi+ + xe- CHARGE DISCHARGE CLix Separator Aluminum can Positive terminal 1a 1b 1a 10 1b 9 Li 9 Li 2a 2b 2a 2b 3 Li 3 8 Li 4 5 5 Li+ ( 6 Li+ Li+ 6 7 7 Li+ 4 ( ) Power Tool Applications Golf Car LES Key Components NB/PC Mobile Phone Prismatic Cell Key Materials EB High-Energy Density Lithium Battery Power Cell Cylindrical Cell Bluetooth MD Player ES Polymer Cell PDA Power Chairs EV/HEV Camcorder Toyota Toyota Honda---ASIMO Honda Nissan---Pivo Toyota Toyota A123 Murata Yamaha EC-02 From:IIT HEV Plug-in 2010 2015 2030 1 1 1 1/2 1.5 1/7 7 1/40 Tesla Motors---Roadster The definition of a Performance Electric Car: • • • • • 0-60 mph acceleration: ~ 4 seconds EPA driving range: > 200 mi Well-to-wheel efficiency: > 135 mpg equivalent Driving cost: about 2 cents per mile Charging infrastructure: existing electric service Tesla Motors designed: • 53 kWh lithium ion battery pack • 185 kW AC induction motor • Power Electronics Module • Carbon fiber body • Boned, extruded aluminum chassis Tesla Battery Pack Technology Summary • 1. 2. 3. 4. 5. 6. • Battery Pack Design Design of safe battery packs using Li -ion Thermal management Cell interconnects Battery monitoring software Special ingredient to prevent propagation Cell balancing Relations with battery cell suppliers Enables •Multi series string of high energy density battery packs •Use of commodity cells •Operation in extreme temp range •Chemistry agnostic •LMO/LTO system has excellent discharge and regain power capabili ty with broad usable energy range---Allows for the design of a smaller energy density system(safer system) to provide the required current. •The LMO/LTO system can potentially provide a longer total life e nergy system in spite of a lower initial energy density, due to the long life capability of the c ell chemistry. •EnerDel offers a total battery solution, providing fully integrated cel ls and system management controls. Outline • • • • • • • Classification of fuel cells DMFC (direct methanol fuel cell) PEMFC (proton exchange membrane fuel cell) AFC (alkaline fuel cell) PAFC (phosphoric acid fuel cell) Fuel Handbook by Fuel Cell Handbook by MCFC (molten carbonate fuel cell) CellTechnicalService EG&G Technical EG&G Service Inc. , 7 Ed. , US Department Inc. , 7 Ed. , US Department of Energy (2004) of Energy (2004) SOFC (solid oxide fuel cell) th th Principles of Method Load 4 e- 4 eH2 4 H+ 4 e- + 4 H + O2 H2O Porous Anode Electrolyte Porous Cathode Anode : Cathode : O2 Overall : 4H 2H 2 4e 2 H 2 O2 4H 2 H 2O 2 H 2O 4e Direct Methanol Fuel Cell (DMFC) Proton Exchange Membrane Fuel Cell (PEMFC) Alkaline Fuel Cell (AFC) Phosphoric Acid Fuel Cell (PAFC) Molten Carbonate Fuel Cell (MCFC) Solid Oxide Fuel Cell (SOFC) 1W 1W 10 W 10 W 100 W 100 W 1 kW 1 kW 10 kW 10 kW 100 kW 100 kW 1 MW 1 MW 10 MW 10 MW 100 MW 100 DMFC PEMFC SOFC PAFC MCFC AFC AFC PEMFC DMFC PAFC MCFC 500 SOFC 1000 oC 100 200 Fuel Cell Handbook by Fuel Cell Handbook by EG&G Technical Service EG&G Technical Service Inc. , 7thth Ed. , US Department Inc. , 7 Ed. , US Department of Energy (2004) of Energy (2004) Fuel Cell Handbook by Fuel Cell Handbook by EG&G Technical Service EG&G Technical Service Inc. , 7thth Ed. , US Department Inc. , 7 Ed. , US Department of Energy (2004) of Energy (2004) Fuel Cell Handbook by Fuel Cell Handbook by EG&G Technical Service EG&G Technical Service Inc. , 7thth Ed. , US Department Inc. , 7 Ed. , US Department of Energy (2004) of Energy (2004) Power Range of Various Fuel Cells Direct Methanol Fuel Cell (DMFC) Proton Exchange Membrane Fuel Cell (PEMFC) Alkaline Fuel Cell (AFC) Phosphoric Acid Fuel Cell (PAFC) Molten Carbonate Fuel Cell (MCFC) Solid Oxide Fuel Cell (SOFC) 1W 1W 10 W 10 W 100 W 100 W 1 kW 1 kW 10 kW 10 kW 100 kW 100 kW 1 MW 1 MW 10 MW 10 MW 100 MW 100 DMFC PEMFC SOFC PAFC MCFC AFC AFC PEMFC DMFC PAFC MCFC 500 SOFC 1000 oC 100 200 Proton Exchange Membrane Fuel Cell (PEMFC) H2O +Air (O2) H2 Nafion® membrane Catalyst support (carbon cloth) Current collector / gas distributor H+ H2 H2 crossover Air (O2) - + Fuel Cells performance improving Raising the current: • Increasing the temperature • Increasing the area of eelectrode electrolyte interface • The use of catalyst Cathode catalyst Anode catalyst Raising the voltage: Connection of cells in series Cell stack ANODE ELECTROLYTE CATHODE ANODE ELECTROLYTE ANODE CATHODE ELECTROLYTE ANODE CATHODE ELECTROLYTE CATHODE ANODE ANODE ELECTROLYTE ELECTROLYTE CATHODE CATHODE ANODE ELECTROLYTE CATHODE Bipolar electrode H2 O2 Stack of several hundred Electrolyte frame Bipolar plate PEMFC – components of a single cell Fuel Cell Handbook by Fuel Cell Handbook by EG&G Technical Service EG&G Technical Service th Inc. , , 7th Ed. , US Department Inc. 7 Ed. , US Department of Energy (2004) of Energy (2004) Fuel Cell Stack Phosphoric Acid Fuel Cell (PAFC) Electrolyte in SiC porous matrix O2 Pt-particles catalysts (anode or cathode) Gas (H2 or O2) PACF parameters: At atmospheric single cell voltage - 600-800 mV pressure temperature - 220 oC current density - 200- 400 mA cm-2 H2 Direct Methanol Fuel Cell (DMFC) CH3OH + H2O + CO2 H2O +Air (O2) Nafion® membrane Current collector / fuel distributor Catalyst support (carbon cloth) H+ CH3OH + H2O CH3OH crossover Air (O2) - + DMFC Application in PDA & Cellular Phone PDA Toshiba Cellular Phone Samsung ITRI Motorola Motorola DMFC Application in NB/ PC DMFC ITRI(JP NanoTech2004) • output 12-24W • weight : 950g • 350x65x90mm • 10v% 80cc fuel for [email protected] • no pump for circulation • In near future, 10cc of pure methanol can provide power to NB for 1 hr operation ITRI(TPF2003) • output 12-24W • 280x240x20mm • 10v%, 65cc fuel for 1hr @14W • no pump for circulation • Weight 1.6kg Toshiba(CEBIT2004) • output 12W • weight 1.2kg •100cc methanol operate 10 hr ITRI Stack • • • • Output 20W(Max) weight : 500g 320x150x14mm Power module for DMFC and PEMFC(> 100W) NB/PC Fuel Cell Power Pack Implant technology • Plane array Fuel cell stack • Hybrid Power converting • Fuel concentration control • Passive furl circulation • temperature control 17 cm 8.5 cm 27 cm NB Fuel Cell Power Pack • Stack Size : 170x32x50mm • Stack Weight : 400 g • Total size/Weight :270x45x85 / 540 g • Operation Concentration 4-7v% • Refuel : 30v% MeOH • Output Voltage : 12V • Average/Max. Power : 10W / 16W Mechanism of DMFC High energy density MEA Tech. High energy density MEA Tech. Low catalyst amount & High efficiency Low catalyst Efficiency CH3OH crossover Catalyst poisoned by CO Operating temp. 80~100 Short lifetime High Selectivity Polymer High Selectivity Polymer Membrane Tech. Membrane Tech. High proton conductivity Low CH3OH permeability Methanol/H2O permeation Diffusion to cathode Methanol crossover Reduce the working voltage/current MEA Structure Diffusion layer Source: Handbook of Fuel Cells – Fundamentals, Technology and Applications, Eds. W. Vielstich, A. Lamm and H.A. Gastegier, John Wiley, Vol. 1, p. 42, 2003. Membrane Anode catalyst layer Fuel reforming CnHm + nH2O = nCO + (m/2 + n)H2 CH4 + H2O = CO + 3H2 CO + H2O = CO2 + H2 CH3OH + H2O = 3 H2 + CO2 no CO CH4 + O2 Catalyst Stainless still Catalyst HEAT T~ 250 oC, Ni-catalyst T~ 500 oC, Ni-catalyst CO2 + H2O CH4 + H2O H2 + COx SOFC – tubular cell structure Fuel Cell Handbook by Fuel Cell Handbook by EG&G Technical Service EG&G Technical Service Inc. , 7thth Ed. , US Department Inc. , 7 Ed. , US Department of Energy (2004) of Energy (2004) SOFC – tubular cell structure Fuel Cell Handbook by Fuel Cell Handbook by EG&G Technical Service EG&G Technical Service Inc. , 7thth Ed. , US Department Inc. , 7 Ed. , US Department of Energy (2004) of Energy (2004) SOFC – evolution of cell components Fuel Cell Handbook by EG&G Technical Service Fuel Cell Handbook by EG&G Technical Service Inc. , 7thth Ed. , US Department of Energy (2004) Inc. , 7 Ed. , US Department of Energy (2004) Supercapacitor Supercapacitor • Porous carbons are frequently applied as electrode materials. ~ low-cost (NT 25-100/kg), stable, high porosity (> 800 m2/g) Basic principle Nanofiber Materials for Supercapacitor 2 Cyclic voltammetry 20 mV/s 1 Electric current (mA) 0 -1 10 mV/s -2 -3 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.4 0.2 Rate capability Charge-discharge curves 25 Potential (V vs. Ag/AgCl) 20 0.0 5C 20C 100C Potential (V vs. Ag/AgCl) Capacitance (F/g) 15 -0.4 10 -0.8 5 -1.2 0 80 160 240 320 0 0 10 20 30 40 50 Time (s) Current density (mA/cm2 ) Nanofiber/Carbon Composite Materials for Supercapacitor Tech. Key Points: •The mesopore volume and specific capacitance are limited for traditional active carbon materials. Active carbon/Nanofiber Active carbon Tech. Breakthrough Points: Increase the surface area and mesopore volume of the active carbon materials by the surface treatment of nanofibers. The nanofiber/carbon materials has nano composite structure and show high rate capability (>100C rate). Effect of pore size distribution on capacitance Micropore (<2nm) Original mesopore (2~50 nm) macropore 30% 45% Tech. Results: •High Mesopore Volume (30% 45%) •High specific volumetric capacitance (0.275 F/m2 0.39 F/m2) Incremental area (m 2 /g nm ) C NFs /C composite •Cycle Life>10000 cycles accessible pore size (function of Pore size ( nm ) electrolyte/hydration molecule size ) Nanofiber/Carbon Composite Materials for Supercapacitor 160 5C 160 100C CNFs/C 120 S p e c i f i c c a p a c it a n c e ( F / g ) CNFs/C S p e c if i c c a p a c i t a n c e ( F / g ) 120 Original C Original C 80 80 40 40 0 0 0 2 4 Discharge current density (mA/cm ) 6 8 2 10 0 1000 2000 3000 Cycle number 4000 5000 6000 7000 Capacitive Deionization Process for Water Treatment CDI Process Advantages: + - CDI process: •Seawater flows along between the gap of electrodes. 1. Low-energy-consumption operation. 2. Without chemicals when pretreatment and electrode regeneration. 3. > 90% water recovery. 4. > 30% energy recovery. 5. Classification and recycling of sea salt. . Roll-type electrode •Seawater flows from inner electrode to outer electrode followed on the spin direction . •The ions are adsorbed on the surface of electrodes, and water penetrate through the electrode . CDI principle + - Electrostatic adsorption Ions are electrostatically adsorbed on electrode surface. •After 30~100 cycles, seawater can transform into fresh . water. : •After ozone disinfection, the fresh water is safe for drinking. Fresh water •Saturated CDI system can discharge to an energystorage device. • The electrostatically adsorbed ions can be easily desorbed. Capacitive Deionization Electrode Materials Nano Composite Electrode Materials 1.Mesoporous volumeof the nano composite carbon is obviously increased after surface modification. 2. The nano compostite carbons show higher (>38%) electric double-layer capacitance and CDI adsorption capacity than those of original carbons. • CDI Adsorption more than 38% Material Active Carbon Composite Carbon Surface Area (m2/g) 920 1060 Pore Volume (cm3/g) 0.48 0.55 Specific Volumetric Capacitance (F/ 0.17 cm2 ) 0.26 CDI Adsorption (ppm/cycle) 210 280 Energy Saving Building Enclosure for Energy Saving - A Subtropical Approach MRL/ITRI March 2005 88 Energy Saving Demo House System Item Demo house Ordinary RChouse Electricity reduction kWhr 1,068 535 1,068 Reduction percentage % 14.3 7.2 14.3 Building Enclosure HVAC & Lighting U = 1.18 W/m2·K U = 3.78 W/m2·K wall U = 1.1 W/m2·K U = 3.11W/m2·K roof SC=1.0 window SC=0.25 2 2 HV AC lighting Ui = 4.61W/m ·K V ariable Air V olume system Total heat exchanger High efficient lighting component U = 6.06W/m ·K Ordinary HV AC system 554 Ordinary lighting component 7.4 1,201 16.1 Nanotech for anti-stain surface of high reflectance paint Nanotech for high NIR reflectance of IR-cut film Energy Saving Demo House-2 System Item Demo house Ordinary RChouse Electricity reduction kWhr 1,375 Reduction percentage % 18.4 Energy Monitoing System HVAC lighting electricity outdoor climate Energy monitoring system none Renewable solar hot water Energy photovoltaic System Panel type collector 400 liter tank 1.7 kW panels Total none none 1,660 7,461 reduced by 68% 22.2 100 DC Plasma Reactor System DC Tech. Features Continuous production of non-agglomerated oxide nano-powders at low cost High temperature (up to 104K) rapid chemical reaction and thus short reaction time Fast quench (>106K/s) non-equilibrium structure High purity Multi-feeding mechanism (solid, liquid or gas) Computer-controlled process DC plasma reaction chamber Effect of processing parameters Affecting Parameter Plasma power Nozzle size Reactant species Feed Rate of Raw Materials Plasma gas Carrier gas Protective gas Cooling gas Plasma Temperature Plasma Reaction Concentration Residence Time Nucleation Rate Growth Rate Controlling Particle Size Size Distribution Particle Shape Crystal Phase Purity •Max output: 150kW •Max temp. ~10000oC ~10000 •Operation pressure ~1 bar ~1 •Throughput ~ kg/hr. kg/hr. TEM of ZnO Nano-particles Tetrapod-like Spherical B=[0001] 1100 1010 0110 1120 0110 1100 2110 0110 5.2Å [001] UV-shielding, Water/oil-repellent, & Anti-microbial ZnO Nanocoating Super hydrophobic Water droplet Super water- and oil-repellent surface Contact angle >145 Water droplet MB (blue) droplet Sunflower seed oil Nano-ZnO Visible Light Photocatalyst Patent pending Absorbance N-doped ZnO nanoparticle with Tetrapod-like morphology 0.4 0.2 N conc. 0.0 400 500 600 700 Wa v e l e n g t h ( n m) Antimicrobial -Escherichia. coli Antimicrobial (BCRC11634) testing under visible light radiation ( =543nm/1500Lux/6 hrs.) =543nm/ 365% CFU Colony Forming Unit CFU: before 0.6% after nm 543 1500Lux Increasing 365% decreasing 99% IR (& UV) Absorbing ZnO Nanorods S o la r S p e c tr u m 1 0% u l t r a v i o l ,e t 5 % 4 v i s i b l4e 5, % in f r a r e d 1.0 0.8 UV cut: 88% Vis. Transmittance: 70% IR cut:30% Hardness:4H(PET substrate) Water transmission rate < 0.7 g/m2 day Absorption 0.6 0.4 0.2 SH450-0106-1f 0818 0106-1f 0723 0225-2 0624 0616 0.0 0 500 1000 1500 2000 2500 Wavelength (nm) IR-cut Film T % R % B1 - B1 - W velen , n a gth m W elen th n av g , m 100 90 80 70 60 TiO 2-Ag-TiO 2 on PET R The IR-cut film requires a high visible transmittance and a high near infrared reflectance levels. To achieve a 60% visible transmittance level and a 40% Solar Heat Gain Coefficient, a 80% near infrared reflectance is required. R% or T% 50 40 30 20 10 0 -10 -20 0 500 1000 1500 2000 2500 T Wavelength(nm) Solar Cell 27~30 27 Solar Cells of Different Materials Solar Single crystalline (sc-Si) Crystalline (Bulk) HIT Silicon type Amorphous (a-Si) Microcrystalline ( c-Si) Polycrystalline (poly-Si) } Bulk (Heterojunction with Intrinsic Thin-layer) (Si, Si Alloy, SiGe, SiC, etc.) c-Si a-Si/ c-Si (GaAs type, etc.) (CuInSe2, CuInGaSe2, CdS, CdTe, etc.) } Thin Film Single Crystalline Solar cells Compound type Polycrystalline Thin Film Wet type Dyesensitized Organic type Already commercialized Partially commercialized Under development Thin film (Solid type) Solid type (a) Schottky junction type (organic/metal) (b) Organic heterojunction (two-layer) type (c) Donor/acceptor composite film (one-layer) type (d) Molecular device type Source :KRI Report No. 8: Solar Cells, February 2005 Various Materials for Solar Cell Various Nov. 2004 Efficiency (%) Cost AM 1.5G at 25oC Mark Lab. Area Commercial (U$/Wp) (cm2) Area(cm2) 25.1% (3.91 cm2) 1000~200 32.0% 0 (3.989 cm2) 24.7% 15~18% 2.5~3.5 (4.00 cm2) (Dia.= 4”~6”) 20.3% 12~14% 2~3 (1.002 cm2) (Dia.= 4”~6”) 21.0% 19.5% Sanyo (101 cm2) (101 cm2) 10.1% < 8.2% (1.199 cm2) (661 cm2) 12.1% (1.0 cm2) 16.5% (1.032 cm2) 19.5% (0.41 cm2) 8.2% (2.36 cm2) < 10.4% (905 cm2) < 10.7% (4874 cm2) < 13.4% (3459 cm2) 2~3 Type Type Materials GaAs III-IV Wafer Based Si GaAs Multi-Junction GaInP/GaAs/Ge Single-Crystalline Si Poly-Crystalline Si HIT Mono-Si Multi-Si Mono/a-Si Hybrid -Crystalline Micro-Crystalline Si Si Thin Film A-Si/ -Si Tandem Amorphous/MicroCrystalline Si Tandem Cd-Te CuInSe2 Dye Sensitized TiO2 II-VI Compounds I-II-VI Compounds Hybrid Dye 2~3 - Basic Theories of Solar Cell P Ec Ef Ev N P + N Ec Ef Ev P N (Photon) + +- Photon qVoc - P N -- Ec +- ++ +- Ef ++ Ev - P +- N P N + + +++++ ----- Electrical Characteristics of Solar Cells I IL ID Rs Rsh + v I=I0 (eV/AVT-1)-Isc RL I= -Isc ( ) ) V=Voc = AVTln(Isc/ I0 +1) ( I0 Dark I Photo V Voc Pm ni e-Eg F.F.(Fill Factor) = (Vm x Im / Voc x Isc) x 100% (Efficiency) = (Vm x Im / Pin) x 100% Isc Collection Loss in Solar Cells 1 N 2 3 4 -e + The Dependency of Photogenerated Current The photogenerated current IL is affected by the values of physical constants , as 1. Diffusion length (L= D) 2. Base Resistivity( cm) Ln(n/p) Lp(p/n) 3. Surface recombination velocity 4. Absorption coefficient Space charge P + - Recombinati on Loss Surface Plasmon Resonance Solar Cells Source: Prof. M. Graetzel, EPFL, Switzerland Cost of PV Systems and Modules Cost Solar Module Cost : 62% Solar Cell Cost : 67% Source : “Solar PV Development: Location of Economic Activity ”, Renewable Energy Policy Project, January, 2005. Value Chains of Crystalline Si Solar Cells Value Source W. Hoffmann, RWE SCHOTT Solar, 20th PVSEC, Barcelona Spain, June 2005. Market Sectors of PV Applications in 2004 Market Source W. Hoffmann, RWE Schott Solar, 20th PVSEC, Barcelona Spain, June 2005. Silicon & Materials Solar Grade Silicon Ingot Wafer Solar Cell Wafer-based Solar Cell PV System PV Module & Installation PV Modules PV System Inverter…… PV Installation PV Product BIPV BIPV Wafers Thin Flm Solar Cell a-Si, CIS … * …….... Inverters: …. …. / PV Applications for the Traffic Signals PV Examples of PV Applications Examples BIPV of DB Lehrter Station in Germany BIPV Solar Application in Africa Solar Baggage with Solar Cells Baggage Standard Adaptors & Chargers Price: NT$ 6,450 http://www.voltaicsystems.com/adaptors.shtml Flow Battery (Microgrid) (Redox-Flow Battery) Principle and Construction of Redox Flow Battery • V3+ Pt wine hook on Glassy carbon Ag/AgCl (as working electrode) reference electrode N2 out N2 in Pt Counter electrode Nafion 117 membrane Vanadium electrolyte Stirring bar Supporting electrolyte (H2SO4) V3+ + H2O -e+e- A VO2+ + 2H+ - - ( ) 120MWh/12MW in USA Hydrogen Storage Materials and System source:“Impact of Hydrogen Production on U.S. Energy Markets ”, P. Friley, E. H. Vidas, T. Huetterman, International Energy Workshop, July 2005. • • – Absorption. Incorporation of atomic hydrogen into interstitial sites in the lattice structure. – Adsorption. Physisorption/chemisorption , require highly porous materials to maximize the surface area. – Chemical reaction. 127 (Metal Hydride) (Chemical Hydride) (AmmoniaBorane,…) (Intermetall ic compound, LaNi5 TiMn2,..) (Element hydride, MgH2, PdH0.6,….) (Complex hydride) Aluminates ([AlH4]-), Borohydrides ([BH4]- ) Amide ([NH2]-) (Carbonbased materials, Metalloorganic framework (Nanomaterials, NH3 storage,…) , , , ) 128 US-DOE Note: Above targets are based on the lower heating value of hydrogen and greater than 300mile vehicle range; targets are for a complete system, including tank, material, valves, regulators, piping, mounting brackets, insulation, added cooling capacity, and/or other balance-of-plant components. Unless otherwise indicated, all targets are for both internal combustion engine and for fuel cell use, based on the low likelihood of power-plant specific fuel being commercially viable. Also note that while efficiency is not a specified target, systems must be energy efficient. For reversible systems, greater than 90% energy efficiency for the energy delivered to the power plant from the on-board storage system is required. For systems generated off-board, the energy content of the hydrogen delivered to the automotive power plant should be greater than 60% of the total energy input to the process, including the input energy of hydrogen and any other fuel streams for generating process heat and 129 electrical energy. Ref:http://www.eere.energy.gov/hydrogenandfuelcells/storage/pdfs /targets_onboard _hydro_storage.pdf Purity H2 capacity (L) 600 ( mm) OD x L (kg) A Company Stainless steel B Company Aluminum alloy AB 5 allo y AB 5 allo y AB 5 allo y AB 2 AB 5, AB 2, BC C 1.5~2. 5MPa, 0– 350C 150~3 00 psig, 1020 C 1-10 Bar -29 ~540C, 1.0MP a at 20 C > 0.1 , ≤ 0.5MPa, 250C 0-16 slpm, 10-50 C, 1 atm, 30 C 1-10 Bar 0~750C, 300W ≥99.999 9% >99.99 %; O2, CO, S<1 ppm N/A 520~560 C Company Aluminum alloy N/A 75x360 <6.1 (0.034kg/L) (0.8 8wt. %) 76 x 365 4.5 (0.028~0.0 (1.0 30kg/L) 3~1. 12w t.%) N/A N/A D Company E Company Aluminum alloy N/A 225 Aluminum alloy >0.07MPa, N/A 0.12 NL/min, 250C 70 63.5x264. 2.18 2 (0.9 (0.024kg/L) 3wt. %) 50 178 0.9 (0.018kg/L) (0.7 0wt. %) 130 Ref.: 1. http://www.hbank.com.tw/products.htm; 2. http://www.apfct.com/4-MH%20Hydrogen.htm; 3. http://www.ovonichydrogen.com/products/portable.htm; 4. http://www.jsw.co.jp/en/product/technology/msb/msb_02_01_e. htm / P-C-T( - - ) ln P H RT S R PH2 Hsolid = Ks P1/2 0 H2/Alloy (wt%) Density H2 Storage g/cm3 Capacity Material Wt.% LaNi5 8.3 1.4 FeTi 6.2 1.8 Mg2Ni 4.1 3.7 Mg 1.74 7.7 Mg-23.5wt%Ni 2.54 6.3 (eutectic alloy) Properties Dissociation H H Pressure kJ/mol H2 kJ/kg alloy (MPa) 30.0 210 0.2 (25 C) 33.3 300 1 (50 C) 64.2 1188 0.1 (290 C) 74.2 2856 0.1 (250 C) 70.8 2230 0.6 (340 C) S kJ/K mol H2 108 104 122 134 130 La0.67Mm 0.33Ni5 log P = -1569/T + 5.86 La0.66Mm0.33Ni5 100 80 60 % 40 20 40 50 60 70 80 90 0 0 10 20 30 40 50 d, mkm (Ti-Zr-Mn-V) 10 m 6.42 g/cm3 Hydrogen pressure (atm) 100 10 1 TixMny 0.1 30oC 1 50 100 150 200 0.01 0 1 2 Hydrogen content (wt%) XRD 2.0 1.9 Stored H2 (wt.%) Cycle Life Testing 1.8 1.7 C500/C1=91.3% 1.6 1.5 0 100 200 300 Cycle number 400 500 Mg-La-Ni Eutectic composition 100 80 Integral of Mass, % 60 40 20 0 0 50 100 150 Cross-size, mkm 200 250 Mg-La-Ni Hydrogenation kinetics of magnesium-based materials Mg, 620 K 6 5 H uptake, wt.% 4 3 2 1 0 0 5 10 t, min 15 20 Mg2Ni, 570 K Mg-Mm-Ni, 570 K Mg2Ni The Mg-Ni system 1600 1400 1200 1000 800 650 29.0 760 506 11.3 1147 1097 T, C M gNi2 100 In te g r a l o f M a s s , % 80 60 40 20 0 0 100 200 300 400 C r o s s - s iz e , m k m 500 600 400 200 0 M g2Ni 20 40 Ni, at.% 60 80 100 LaNi5, 300 K 12 10 Mg, 620 K Mg2Ni, 570 K Mg-Mm-Ni, 570 K Hydrogenation kinetics of magnesium-based materials Mg, 620 K 6 5 H uptake, wt.% 4 3 2 1 0 Mg2Ni, 570 K Mg-Mm-Ni, 570 K 8 p, atm 6 4 2 0 0 1 2 3 4 wt.% H 5 6 7 8 0 5 10 t, min 15 20 / (>99.9999%) 3C 40L H2 1000L H2 2000L H2 WENET 95000L H2 Osaka, Japan Al foam Porous metal filter Divider Cooling tube Thermal insulation 22000 liters H2 (switchable mirror) RE-Mg 1kWh 3kWh High temp. unit 20 60 5 50oC Hydrogen flow (L/Min) 50 65oC Hydrogen Flow (L/Min) 62.072 4 Hydrogen flow (L/Min) 40 30 20 10 Integration of Data1_B from zero: i = 1 --> 2575 x = 0.00267 --> 60.00045 Area Peak at Width Height -----------------------------------------------------------3021.47942 44.0108 59.99778 3 10 2 1 0 0 10 20 30 40 50 60 70 80 90 100 0 0 Time (Min) 0 10 20 30 40 50 60 70 80 90 100 110 120 Time (Min) 0 10 20 30 40 50 60 70 Time (Min) Capacity ~ 1500 L Flow rate 15 L/min. 60min @50 C Weight ( ) 14 Kg ( ) 23 Kg Size ( ) 9 H62 cm ( ) 14 H69 cm Capacity ~ 4200 L Flow rate 50 L/min. 60min.@65 C Weight 76.5 Kg Size L30 W30 H83 cm Capacity ~ 200 L Flow rate 2.5L/min.@250~300 C Weight( heater) 3 Kg Size ( heater) 8 H30 cm Status of Hydrogen Storage Technologies The key challenges include: Weight and Volume. The weight and volume of hydrogen storage systems are presently too high, resulting in inadequate vehicle range compared to conventi onal petroleum fueled vehicles. Efficiency. Energy efficiency is a challenge for all hydrogen storage appro aches. The energy required to get hydrogen in and out is an issue for reversible s olid-state materials. Durability. Durability of hydrogen storage systems is inadequate. Materials and components are needed that allow hydrogen storage systems with a lifetime of 15 00 cycles. Refueling Time. Refueling times are too long. There is a need to develop hydrog en storage systems with refueling times of less than three minutes. Cost. The cost of on-board hydrogen storage systems is too high. Ref:http://www.eere.energy.gov/hydrogenandfuelcells/storage/pdfs /targets_onboard_hydro_storage.pdf ...
View Full Document

This note was uploaded on 11/11/2010 for the course CHE CH2005 taught by Professor 曹恒光 during the Spring '10 term at National Central University.

Ask a homework question - tutors are online